COVID-19 is mainly associated with respiratory distress syndrome, but a subset of patients often present gastrointestinal (GI) symptoms. Imbalances of gut microbiota have been previously linked to respiratory virus infection. Understanding how the gut–lung axis affects the progression of COVID-19 can provide a novel framework for therapies and management. In this study, we examined the gut microbiota of patients with COVID-19 (n = 47) and compared it to healthy controls (n = 19). Using shotgun metagenomic sequencing, we have identified four microorganisms unique in COVID-19 patients, namely Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and Prevotella bivia. The abundances of Bacteroides stercoris, B. vulgatus, B. massiliensis, Bifidobacterium longum, Streptococcus thermophilus, Lachnospiraceae bacterium 5163FAA, Prevotella bivia, Erysipelotrichaceae bacterium 6145, and Erysipelotrichaceae bacterium 2244A were enriched in COVID-19 patients, whereas the abundances of Clostridium nexile, Streptococcus salivarius, Coprococcus catus, Eubacterium hallii, Enterobacter aerogenes, and Adlercreutzia equolifaciens were decreased (p < 0.05). The relative abundance of butyrate-producing Roseburia inulinivorans is evidently depleted in COVID-19 patients, while the relative abundances of Paraprevotella sp. and the probiotic Streptococcus thermophilus were increased. We further identified 30 KEGG orthology (KO) modules overrepresented, with 7 increasing and 23 decreasing modules. Notably, 15 optimal microbial markers were identified using the random forest model to have strong diagnostic potential in distinguishing COVID-19. Based on Spearman’s correlation, eight species were associated with eight clinical indices. Moreover, the increased abundance of Bacteroidetes and decreased abundance of Firmicutes were also found across clinical types of COVID-19. Our findings suggest that the alterations of gut microbiota in patients with COVID-19 may influence disease severity. Our COVID-19 classifier, which was cross-regionally verified, provides a proof of concept that a set of microbial species markers can distinguish the presence of COVID-19.
SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 μM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 μM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.
Background Emerging evidence suggest the critical role of circular RNAs (circRNAs) in disease development especially in various cancers. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) is still largely unknown. Methods RNA sequencing was performed to identify significantly upregulated circRNAs in paired HCC tissues and non-tumor tissues. CCK-8 assay, colony formation, transwell, and xenograft mouse models were used to investigate the role of circRNAs in HCC proliferation and metastasis. Small interfering RNA (siRNA) was used to silence gene expression. RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assay and western blot were used to explore the underlying molecular mechanisms. Results Hsa_circ_0095868, derived from exon 5 of the MDK gene (named circMDK), was identified as a new oncogenic circRNA that was significantly upregulated in HCC. The upregulation of circMDK was associated with the modification of N6-methyladenosine (m6A) and poor survival in HCC patients. Mechanistically, circMDK sponged miR-346 and miR-874-3p to upregulate ATG16L1 (Autophagy Related 16 Like 1), resulting to the activation of PI3K/AKT/mTOR signaling pathway to promote cell proliferation, migration and invasion. Poly (β-amino esters) (PAEs) were synthesized to assist the delivery of circMDK siRNA (PAE-siRNA), which effectively inhibited tumor progression without obvious adverse effects in four liver tumor models including subcutaneous, metastatic, orthotopic and patient-derived xenograft (PDX) models. Conclusions CircMDK could serve as a potential tumor biomarker that promotes the progression of HCC via the miR-346/874-3p-ATG16L1 axis. The PAE-based delivery of siRNA improved the stability and efficiency of siRNA targeting circMDK. The PAE-siRNA nanoparticles effectively inhibited HCC proliferation and metastasis in vivo. Our current findings offer a promising nanotherapeutic strategy for the treatment of HCC. Graphical Abstract
Methane (CH ) emissions from tropical wetlands contribute 60%-80% of global natural wetland CH emissions. Decreased wetland CH emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño-Southern Oscillation (ENSO) on CH emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models' projections. We use a process-based model of global wetland CH emissions to investigate the impacts of the ENSO on CH emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8-month time lag was detected between tropical wetland CH emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH concentrations throughout the 1980s and 1990s and to stable atmospheric CH concentrations from 1999 to 2006, resulting in negative feedback to global warming.
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has spread globally to over 200 countries with more than 23 million confirmed cases and at least 800,000 fatalities as of 23 August 2020. Declared a pandemic on March 11 by World Health Organization, the disease caused by SARS‐CoV‐2 infection, called coronavirus disease 2019 (COVID‐19), has become a global public health crisis that challenged all national healthcare systems. This review summarized the current knowledge about virologic and pathogenic characteristics of SARS‐CoV‐2 with emphasis on potential immunomodulatory mechanism and drug development. With multiple emerging technologies and cross‐disciplinary approaches proving to be crucial in our global response against COVID‐19, the application of PROteolysis TArgeting Chimeras strategy, CRISPR‐Cas9 gene editing technology, and Single‐Nucleotide‐Specific Programmable Riboregulators technology in developing antiviral drugs and detecting infectious diseases are proposed here. We also discussed the available but still limited epidemiology of COVID‐19 as well as the ongoing efforts on vaccine development. In brief, we conducted an in‐depth analysis of the pathogenesis of SARS‐CoV‐2 and reviewed the therapeutic options for COVID‐19. We also proposed key research directions in the future that may help uncover more underlying molecular mechanisms governing the pathology of COVID‐19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.