BackgroundThe steroid hormone estrogen (17-β-estradiol, E2) provides neuroprotection against cerebral ischemic injury by activating estrogen receptors. The novel estrogen receptor G protein-coupled receptor 30 (GPR30) is highly expressed in the brain and provides acute neuroprotection against stroke. However, the underlying mechanisms remain unclear.MethodsIn this study, ovariectomized female mice were subjected to middle cerebral artery occlusion (MCAO), and E2, G1, and ICI182780 were administered immediately upon reperfusion. The infarction volume, neurological scores, and neuronal injuries were examined. Primary microglial cells were subjected to oxygen-glucose deprivation (OGD), and the drugs were administered immediately upon reintroduction. The pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in penumbra and microglia were assessed by ELISA. The cell viability and lactose dehydrogenase (LDH) release of neurons co-cultured with microglia were analyzed using cell counting kit-8 (CCK8) and LDH release assays. Microglial activation as well as GPR30, Iba1, and Toll-like receptor 4 (TLR4) protein expression and TLR4 mRNA expression were detected. Additionally, NF-κB activity was detected in lipopolysaccharide (LPS)-activated microglia after the activation of GPR30.ResultsGPR30 was highly expressed in microglia and significantly increased after ischemic injury. The activation of GPR30 significantly reduced the infarction volume, improved the neurological deficit, and alleviated neuronal injuries. Moreover, GPR30 activation significantly reduced the release of TNF-α, IL-1β, and IL-6 from ischemic penumbra and microglia subjected to OGD and alleviated neuronal injury as assessed using the CCK8 and LDH assays. Finally, the activation of GPR30 relieved microglial activation, reduced Iba1 and TLR4 protein expression and TLR4 mRNA levels, and inhibited NF-κB activity.ConclusionsMicroglial GPR30 exerts acute neuroprotective effects by inhibiting TLR4-mediated microglial inflammation, which indicates that GPR30 may be a potential target for the treatment of ischemic stroke.Electronic supplementary materialThe online version of this article (10.1186/s12974-018-1246-x) contains supplementary material, which is available to authorized users.
Gastrodin (GAS), an active constituent of the Chinese herbal medicine Tianma, has anti-oxidant and anti-inflammation activities but its protective effect to the prevention of neurotoxicity induced by ischemic stroke is unclear. In the present study, middle cerebral artery occlusion (MCAO) was used to establish a mice ischemic stroke model. Infarct volume ratio and neurobehavioral score were evaluated, Nissl staining was performed and the expression of cleaved Caspase 3, Bax and B cell lymphoma 2 (Bcl-2) were assessed at 24 h or 7 days after reperfusion. In addition, the total superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, as well as the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), SOD1, phospho-Akt and total Akt and TNF-α and IL-1β in the ischemic hemispheres were also observed at 6 h after reperfusion to assess oxidative stress and inflammatory changes after GAS treatment. It was found that GAS, especially at high dose (100 mg/kg) reduced tested neuronal injury and neurobehavioral deficient in MCAO mice. Enhanced expression of cleaved Caspase 3 and Bax and decreased expression of Bcl-2 by MCAO were also reversed by GAS. Moreover, GAS treatment decreased the MDA content and the expression of TNF-α and IL-1β, and increased amount of SOD activity and the expression of HO-1 and SOD1 in GAS-treated ischemic brain. Furthermore, GAS significantly increased Akt phosphorylation and Nrf2 expression. These results support the neuroprotective effects of GAS, and the activation of Akt/Nrf2 pathway may play a critical role in the pharmacological action of GAS.
The role of autophagy varies with the type of acute brain injury. In general, autophagy mediates a clear neuroprotective effect in intoxication caused by various psychoactive agents, subarachnoid hemorrhage and spinal cord injury. In contrast, autophagic cell death has also been reported to actively contribute to neuronal loss in neonatal hypoxic ischemic encephalopathy. However, it still remains to be determined whether autophagy pays a cytoprotective or a cytotoxic role in stroke. Previous studies focused primarily on the role of neurons rather than the role of astrocytes in brain injury. Thus, it is unknown whether modulating the autophagy flux of astrocytes contributes to improving neuronal survival after stroke. In the current study, we investigated the time course of autophagy flux in vitro using cocultured astrocytes and neurons exposed to oxygen-glucose deprivation/reoxygenation, which mimicked the process of ischemia/reperfusion. Autophagy flux of astrocytes was regulated by treatment with the autophagy inducer rapamycin, autophagy inhibitor 3-methyladenine, and the transduction of small interfering RNA against autophagy-related gene 5. In addition, AAV-GFAP-ATG7 was used to induce astrocyte autophagy flux in mice subjected to focal cerebral ischemia. We found that induction of autophagy flux of astrocytes in vitro enhanced the viability of neurons and decreased neuronal apoptosis. Furthermore, induction of astrocyte autophagy flux in mice improved neurological outcomes. In contrast, inhibition of autophagy flux in astrocytes decreased the viability of neurons and increased neuronal apoptosis. These results suggest that upregulation of autophagy flux in astrocytes may contribute to endogenous neuroprotective and neurorecovery mechanisms after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.