Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.