BACKGROUNDUnderstanding the epidemiology and clinical course of multisystem inflammatory syndrome in children (MIS-C) and its temporal association with coronavirus disease 2019 (Covid-19) is important, given the clinical and public health implications of the syndrome. METHODSWe conducted targeted surveillance for MIS-C from March 15 to May 20, 2020, in pediatric health centers across the United States. The case definition included six criteria: serious illness leading to hospitalization, an age of less than 21 years, fever that lasted for at least 24 hours, laboratory evidence of inflammation, multisystem organ involvement, and evidence of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse-transcriptase polymerase chain reaction (RT-PCR), antibody testing, or exposure to persons with Covid-19 in the past month. Clinicians abstracted the data onto standardized forms. RESULTSWe report on 186 patients with MIS-C in 26 states. The median age was 8.3 years, 115 patients (62%) were male, 135 (73%) had previously been healthy, 131 (70%) were positive for SARS-CoV-2 by RT-PCR or antibody testing, and 164 (88%) were hospitalized after April 16, 2020. Organ-system involvement included the gastrointestinal system in 171 patients (92%), cardiovascular in 149 (80%), hematologic in 142 (76%), mucocutaneous in 137 (74%), and respiratory in 131 (70%). The median duration of hospitalization was 7 days (interquartile range, 4 to 10); 148 patients (80%) received intensive care, 37 (20%) received mechanical ventilation, 90 (48%) received vasoactive support, and 4 (2%) died. Coronary-artery aneurysms (z scores ≥2.5) were documented in 15 patients (8%), and Kawasaki's disease-like features were documented in 74 (40%). Most patients (171 [92%]) had elevations in at least four biomarkers indicating inflammation. The use of immunomodulating therapies was common: intravenous immune globulin was used in 144 (77%), glucocorticoids in 91 (49%), and interleukin-6 or 1RA inhibitors in 38 (20%). CONCLUSIONSMultisystem inflammatory syndrome in children associated with SARS-CoV-2 led to serious and life-threatening illness in previously healthy children and adolescents. (Funded by the Centers for Disease Control and Prevention.
IMPORTANCE Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. OBJECTIVE To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). SETTING, DESIGN, AND PARTICIPANTS Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase-polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. EXPOSURE SARS-CoV-2. MAIN OUTCOMES AND MEASURES Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. RESULTS Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI,] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×10 3 cells/μL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days.CONCLUSIONS AND RELEVANCE This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-...
Intrauterine growth retardation has been linked to the development of type 2 diabetes in later life. The mechanisms underlying this phenomenon are unknown. We have developed a model of uteroplacental insufficiency, a common cause of intrauterine growth retardation, in the rat. Bilateral uterine artery ligation was performed on day 19 of gestation (term is 22 days) in the pregnant rat; sham-operated pregnant rats served as controls. Birth weights of intrauterine growth-retarded (IUGR) animals were significantly lower than those of controls until ϳ7 weeks of age, when IUGR rats caught up to controls. Between 7 and 10 weeks of age, the growth of IUGR rats accelerated and surpassed that of controls, and by 26 weeks of age, IUGR rats were obese (P < 0.05 vs. controls). No significant differences were observed in blood glucose and plasma insulin levels at 1 week of age. However, between 7 and 10 weeks of age, IUGR rats developed mild fasting hyperglycemia and hyperinsulinemia (P < 0.05 vs. controls). At age 26 weeks, IUGR animals had markedly elevated levels of glucose (P < 0.05 vs. controls). IUGR animals were glucose-intolerant and insulin-resistant at an early age. First-phase insulin secretion in response to glucose was also impaired early in life in IUGR rats, before the onset of hyperglycemia. There were no significant differences in -cell mass, islet size, or pancreatic weight between IUGR and control animals at 1 and 7 weeks of age. However, in 15-week-old IUGR rats, the relative -cell mass was 50% that of controls, and by 26 weeks of age, -cell mass was less than one-third that of controls (P < 0.05). The data presented here support the hypothesis that an abnormal intrauterine milieu can induce permanent changes in glucose homeostasis after birth and lead to type 2 diabetes in adulthood. Diabetes 50:2279 -2286, 2001 I ntrauterine growth retardation is a common complication of pregnancy and a significant cause of perinatal morbidity and mortality. Barker et al. (1,2) first introduced the hypothesis that an adverse intrauterine environment could induce disease in later life. He proposed that low-birth weight infants were at increased risk for developing obesity, hypertension, and type 2 diabetes. Several subsequent studies have lent support to Barker's hypothesis (3-6). However, multiple problems associated with these population-based studies, such as the lack of association of gestational age with birth weight, inadequate recording of confounding variables, and loss to follow-up, have dampened enthusiasm for the universal acceptance of Barker's hypothesis. Experiments using animal models of intrauterine growth retardation can circumvent some of these difficulties and elucidate the underlying cellular and molecular mechanisms. To that end, we have developed a model of intrauterine growth retardation in the rat induced by bilateral uterine artery ligation (7,8). Blood flow to the fetus is not ablated, but reduced to a similar degree to that observed in human pregnancies complicated by uteroplacental insuffici...
IMPORTANCE Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. OBJECTIVE To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. SETTING, DESIGN, AND PARTICIPANTS Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features. EXPOSURES Severe acute respiratory syndrome coronavirus 2. MAIN OUTCOMES AND MEASURES Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. RESULTS Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-tolymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19-related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. CONCLUSIONS AND RELEVANCE In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.