Intertidal macroalgae must tolerate temperature, light, and desiccation stresses when the tide recedes, and differences in physiological tolerance to these environmental stresses contribute directly to zonation patterns and community structure along the shore. When low tides occur on particularly hot sunny days, seaweeds may sustain physiological damage, lose pigment, and 'bleach.' Because bleaching events often occur when temperature, light, and desiccation stresses coincide, their precise cause is not understood. We conducted fully factorial laboratory manipulations to explore the individual and interactive effects of temperature, light, and desiccation on acute pigment loss in the intertidal coralline Calliarthron tuberculosum (Postels & Ruprecht) E. Y. Dawson. Findings suggest that desiccation is the most significant contributor to bleaching; desiccating fronds even bleached in the dark at 15掳C. Susceptibility to desiccation may explain why mid-intertidal C. tuberculosum fronds are rarely found outside tidepools. Light and temperature had only marginal effects on pigment loss, although stresses interacted with increasing significance through time. When combined, temperature, light, and desiccation stresses were capable of inducing, on average, 50% pigment loss in C. tuberculosum within 24 min of emersion. These physiological data could be used in conjunction with environmental datasets to generate 'ecomechanical' models to predict future bleaching events and their ecological consequences under hypothetical climate change scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.