VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca(2+) across the OMM and because Ca(2+) has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca(2+) levels ([Ca(2)(+)]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca(2+) and induce VDAC1 over-expression. Direct elevation of [Ca(2+)]i by the Ca(2+)-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca(2+)]i using the cell-permeable Ca(2+)-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca(2+)]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca(2+)-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca(2+)]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca(2+) promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.