Biofilm formation by photosynthetic organisms is a complex behavior that serves multiple functions in the environment. Biofilm formation in the unicellular cyanobacterium Synechococcus elongatus PCC 7942 is regulated in part by a set of small secreted proteins that promotes biofilm formation and a self-suppression mechanism that prevents their expression. Little is known about the regulatory and structural components of the biofilms in PCC 7942, or response to the suppressor signal(s). We performed transcriptomics (RNA-Seq) and phenomics (RB-TnSeq) screens that identified four genes involved in biofilm formation and regulation, more than 25 additional candidates that may impact biofilm formation, and revealed the transcriptomic adaptation to the biofilm state. In so doing, we compared the effectiveness of these two approaches for gene discovery.
A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homologue, Ogt, participates in the inhibitory processinactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild-type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild-type; therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt-mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.
Biofilm formation by photosynthetic organisms is a complex behavior that serves multiple functions in the environment. Biofilm formation in the unicellular cyanobacterium Synechococcus elongatus PCC 7942 is regulated in part by a set of small secreted proteins that promotes biofilm formation and a self-suppression mechanism that prevents their expression. Little is known about the regulatory and structural components of the biofilms in PCC 7942, or response to the suppressor signal(s). We performed transcriptomics (RNA-Seq) and phenomics (RB-TnSeq) screens that identified four genes involved in biofilm formation and regulation, more than 25 additional candidates that may impact biofilm formation, and revealed the transcriptomic adaptation to the biofilm state. In so doing, we compared the effectiveness of these two approaches for gene discovery.
A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homolog, Ogt, participates in the inhibitory process. inactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild type, therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.