Catalytic transformation of CH4 under a mild condition is significant for efficient utilization of shale gas under the circumstance of switching raw materials of chemical industries to shale gas. Here, we report the transformation of CH4 to acetic acid and methanol through coupling of CH4, CO and O2 on single-site Rh1O5 anchored in microporous aluminosilicates in solution at ≤150 °C. The activity of these singly dispersed precious metal sites for production of organic oxygenates can reach about 0.10 acetic acid molecules on a Rh1O5 site per second at 150 °C with a selectivity of ~70% for production of acetic acid. It is higher than the activity of free Rh cations by >1000 times. Computational studies suggest that the first C–H bond of CH4 is activated by Rh1O5 anchored on the wall of micropores of ZSM-5; the formed CH3 then couples with CO and OH, to produce acetic acid over a low activation barrier.
A catalytic site typically consists of one or more atoms of a catalyst surface that arrange into a configuration offering a specific electronic structure for adsorbing or dissociating reactant molecules. The catalytic activity of adjacent bimetallic sites of metallic nanoparticles has been studied previously. An isolated bimetallic site supported on a non-metallic surface could exhibit a distinctly different catalytic performance owing to the cationic state of the singly dispersed bimetallic site and the minimized choices of binding configurations of a reactant molecule compared with continuously packed bimetallic sites. Here we report that isolated Rh 1 Co 3 bimetallic sites exhibit a distinctly different catalytic performance in reduction of nitric oxide with carbon monoxide at low temperature, resulting from strong adsorption of two nitric oxide molecules and a nitrous oxide intermediate on Rh 1 Co 3 sites and following a low-barrier pathway dissociation to dinitrogen and an oxygen atom. This observation suggests a method to develop catalysts with high selectivity.
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2 O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550°C. Being a cost-effective catalyst, NiCo 2 O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo 2 O 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3 O with a following dehydrogenation to À CH 2 O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.
Heterogeneous catalysis performs on specific sites of a catalyst surface even if specific sites of many catalysts during catalysis could not be identified readily. Design of a catalyst by managing catalytic sites on an atomic scale is significant for tuning catalytic performance and offering high activity and selectivity at a relatively low temperature. Here, we report a synergy effect of two sets of single-atom sites (Ni1 and Ru1) anchored on the surface of a CeO2 nanorod, Ce0.95Ni0.025Ru0.025O2. The surface of this catalyst, Ce0.95Ni0.025Ru0.025O2, consists of two sets of single-atom sites which are highly active for reforming CH4 using CO2 with a turnover rate of producing 73.6 H2 molecules on each site per second at 560 °C. Selectivity for producing H2 at this temperature is 98.5%. The single-atom sites Ni1 and Ru1 anchored on the CeO2 surface of Ce0.95Ni0.025Ru0.025O2 remain singly dispersed and in a cationic state during catalysis up to 600 °C. The two sets of single-atom sites play a synergistic role, evidenced by lower apparent activation barrier and higher turnover rate for production of H2 and CO on Ce0.95Ni0.025Ru0.025O2 in contrast to Ce0.95Ni0.05O2 with only Ni1 single-atom sites and Ce0.95Ru0.05O2 with only Ru1 single-atom sites. Computational studies suggest a molecular mechanism for the observed synergy effects, which originate at (1) the different roles of Ni1 and Ru1 sites in terms of activations of CH4 to form CO on a Ni1 site and dissociation of CO2 to CO on a Ru1 site, respectively and (2) the sequential role in terms of first forming H atoms through activation of CH4 on a Ni1 site and then coupling of H atoms to form H2 on a Ru1 site. These synergistic effects of the two sets of single-atom sites on the same surface demonstrated a new method for designing a catalyst with high activity and selectivity at a relatively low temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.