Over the last 20 years there have been 32 reports of carbapenem-resistant organisms in the hospital water environment, with half of these occurring since 2010. The majority of these reports have described associated clinical outbreaks in the intensive care setting, affecting the critically ill and the immunocompromised. Drains, sinks, and faucets were most frequently colonized, and Pseudomonas aeruginosa the predominant organism. Imipenemase (IMP), Klebsiella pneumoniae carbapenemase (KPC), and Verona integron-encoded metallo-β-lactamase (VIM) were the most common carbapenemases found. Molecular typing was performed in almost all studies, with pulse field gel electrophoresis being most commonly used. Seventy-two percent of studies reported controlling outbreaks, of which just more than one-third eliminated the organism from the water environment. A combination of interventions seems to be most successful, including reinforcement of general infection control measures, alongside chemical disinfection. The most appropriate disinfection method remains unclear, however, and it is likely that replacement of colonized water reservoirs may be required for long-term clearance.
There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (<30 in.) during faucet operation. We also demonstrated that P-trap colonization could occur by retrograde transmission along a common pipe. We postulate that the organisms mobilize up to the strainer from the P-trap, resulting in droplet dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater source to hospitalized patients in a world with increasingly antibiotic-resistant bacteria that can thrive in wastewater environments and cause infections in vulnerable patients.
An intervention targeting wastewater plumbing fixtures, by installation of hopper covers, demonstrated a decrease in patient KPCO acquisitions. Considering wastewater reservoirs in nosocomial transmission of multispecies carbapenemase-producing Enterobacteriaceae may be critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.