Free vibration of soil often occurs during earthquakes. Since the vibration caused by earthquake does not have (steady state harmonic vibration) continuity, the alluvium vibrates with its natural frequency between two natural seismic waves. This study evaluates the effect of piles on the period of free vibration of a soil layer using numerical method. In the first stage, using analytical equations for calculation of vibration period of a soil layer and a column with continuous mass, the results were analyzed by the software. In the second step, piles with the same dimensions and distance were added step by step, and the vibration period for the soil layer with piles was calculated. The friction or floating effects of the piles on alluvial soil vibration period was also examined. The results show that as the number of piles increases, the differences between the results of one dimensional * Corresponding author v.shirgir@gmail.com 3840Journal of Engineering Geology, Vol. 10, No. 4, Winter 2017 analysis of alluvium soil and the results of the software become different, and this creates the need for specific arrangements for seismic analysis of this kind of alluvium (with inserted piles). The results also suggest that end-bearing piles have a greater effect on alluvial soil vibration period, and with increased amount of the floating of these piles, these effects decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.