Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound‐based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
Owing to the noticeable increase in the number of patients with impaired wound healing capabilities, developing bioactive wound dressings with supportive physicomechanical and biological properties for clinical wound management has attracted much more attention nowadays. In this regard, engineered dressings with angiogenesis potential are vital for accelerated tissue regeneration. In the current study, nanoniosomal deferoxamine (DFO)-loaded transparent films of egg white−poly(vinyl alcohol) (PVA/EW/ND) were successfully fabricated at three different PVA/EW ratios (1:0, 1:1, and 1:1.5 wt/wt %) through the thin film hydration and solvent casting methods. The developed films' characterizations were carried out using scanning electron microscopy, Fourier transform infrared spectroscopy analysis, uniaxial tensile strength, water uptake, water vapor transmission rate, in vitro degradation, and drug release. The results demonstrated that the various weight ratios of PVA/EW have a significant effect on the microscopic morphology, equilibrium swelling, degradation, and mechanical properties of the films. The drug release profile exhibited a sustained release of DFO with controlled burst-lag phases resembling the Korsmeyer−Peppas pattern. The cytotoxicity and adhesion analysis using human dermal fibroblasts displays the biocompatibility of the developed PVA/EW/ND films and the formation of cellular colonies on the surface. The in vitro angiogenic capability of the developed films evaluated by the scratch wound assay and microbead-assisted tube formation study showed a significant increase in the rate of migration of human umbilical vein endothelial cells and in the number of tube-like structures. Therefore, the achieved results suggest that the presented PVA/EW/ ND film has promising potential for effective wound healing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.