Given a simple, undirected graph G, a biclique is a subset of vertices inducing a complete bipartite subgraph in G. In this paper, we consider two associated optimization problems, the maximum biclique problem, which asks for a biclique of the maximum cardinality in the graph, and the maximum edge biclique problem, aiming to find a biclique with the maximum number of edges in the graph. These NP-hard problems find applications in biclustering-type tasks arising in complex network analysis. Real-life instances of these problems often involve massive, but sparse networks. We develop exact approaches for detecting optimal bicliques in large-scale graphs that combine effective scale reduction techniques with integer programming methodology. Results of computational experiments with numerous real-life network instances demonstrate the performance of the proposed approach.
Stream processing (SP) became relevant mainly due to inexpensive and hence ubiquitous deployment of sensors in many domains (e.g., environmental monitoring, battle field monitoring). Other continuous data generators (surveillance, traffic data) have also prompted processing and analysis of these streams for applications such as traffic congestion/accidents and personalized marketing. Image processing has been researched for several decades. Recently there is emphasis on video stream analysis for situation monitoring due to the ubiquitous deployment of video cameras and unmanned aerial vehicles for security and other applications. This paper elaborates on the research and development issues that need to be addressed for extending the traditional stream processing framework for video analysis, especially for situation awareness. This entails extensions to: data model, operators and language for expressing complex situations, QoS (Quality of service) specifications and algorithms needed for their satisfaction. Specifically, this paper demonstrates inadequacy of current data representation (e.g., relation and arrable) and querying capabilities to infer long-term research and development issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.