Gel polymer electrolyte (GPE) comprising a low viscosity ionic liquid, that is, 1-propyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide (PMI-TFSI, viscosity 38 cP at 20°C) and a polymer, that is, polyvinyl alcohol (PVA) have been prepared using solution cast technique and characterized by impedance spectroscopy, X-ray diffraction, differential scanning calorimetry, optical microscopy, and Fourier transform infrared spectroscopy. Blending PMI-TFSI with PVA matrix hindered the crystallinity of polymer matrix and presented remarkable enhancement in electrical conductivity with a conductivity maxima at 250 wt% PMI-TFSI. The prepared electric double-layer capacitor using single-walled carbon nanotube as symmetric electrodes and PVA:250 wt% PMI-TFSI as GPE presented a capacitance value of about 28 F g−1.
2D perovskite nanoparticles have a great potential for using in optoelectronic devices such as Solar Cells and Light Emitting Diodes within their tuneable optic and structural properties. In this chapter, it is aimed to express “relation between chemical structures and photo-physical behaviours of perovskite nanoparticles and milestones for their electronic applications”. Initially, general synthesis methods of perovskite nanoparticles have been explained. Furthermore, advantages and disadvantages of the methods have been discussed. After the synthesis, formation of 2D perovskite crystal and effects on shape factor, particle size and uniformity of perovskite have been explained in detail. Beside these, optic properties of luminescent perovskite nanoparticles have been summarized a long with spectral band tuning via size and composition changes. In addition, since their different optical properties and relatively more stable chemical structure under ambient conditions, a comprehensive compilation of opto-electronic applications of 2D perovskite nanoparticles have been prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.