Background Lung ischemia reperfusion (IR) complicates numerous clinical processes, such as cardiac arrest, transplantation, and major trauma. These conditions generate sterile inflammation, which can cause or augment acute lung injury. We previously reported that lung and systemic inflammation in a mouse model of ventilated lung IR depends on Toll-like receptor (TLR) 4 signaling and the presence of alveolar macrophages. Here, we tested the hypothesis that the intestinal microbiome has a role in influencing the inflammatory response to lung IR. Methods Lung IR was created in intubated mechanically ventilated mice via reversible left pulmonary artery occlusion followed by reperfusion. Inflammatory markers and histology were tracked over varying periods of reperfusion (from 1h to 24h). Separate groups of mice were given intestinally-localized antibiotics for 8-10 weeks, and then were subjected to left lung IR and analysis of lungs and plasma for markers of inflammation. Alveolar macrophages from antibiotic-treated or control mice were tested ex vivo for inflammatory responses to bacterial TLR agonists, namely LPS and Pam3Cys. Results Inflammation generated by left lung IR was rapid in onset and dissipated within 12-24h. Treatment of mice with intestinally localized antibiotics was associated with a marked attenuation of circulating and lung inflammatory markers, and histologic evidence of infiltrating cells and edema in the lung following IR. Alveolar macrophages from antibiotic-treated mice produced less cytokines ex vivo when stimulated with TLR agonists as compared to those from control mice. Conclusions Our data indicate that the inflammatory response induced by lung IR is transient and is strongly influenced by intestinal microbiota. These data suggest that the intestinal microbiome could potentially be manipulated to attenuate the post-IR pulmonary inflammatory response.
Inflammatory cytokines interleukin 1 (IL-1), IL-2, IL-6, and tumor necrosis factor-alpha (TNF-alpha) have been recognized as important mediators of pathophysiological and immunological events associated with shock. These inflammatory events after hemorrhage and resuscitation are characterized by the activation of transcription regulators such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). Curcumin, an anti-inflammatory remedy used in Indian medicine, is known to suppress NF-kappaB and AP-1 activation and also to reduce ischemia-reperfusion injuries in animal models. Therefore, the aim of this study was to determine whether administration of curcumin before hemorrhagic shock has any salutary effects on cytokines and the redox-sensitive transcription factors NF-kappaB and AP-1. mRNA levels of IL-1alpha, IL-1beta, IL-2, IL-6, IL-10, and TNF-alpha were determined by reverse transcriptase-polymerase chain reaction in rat livers collected at 2 and 24 h after hemorrhage/resuscitation. The effect of curcumin on the activation of NF-kappaB and AP-1 was determined by electrophoretic mobility shift assays. Significant increases in the levels of liver cytokines IL-1alpha, IL-1beta, IL-2, IL-6, and IL-10 were observed in the 2-h posthemorrhage/resuscitation group compared with sham animals. In contrast, oral administration of curcumin for 7 days followed by hemorrhage/resuscitation regimen resulted in significant restoration of these cytokines to depleted levels, and, in fact, IL-1beta levels were lower than sham levels. Also, the 24-h postresuscitation group showed similar patterns with some exceptions. NF-kappaB and AP-1 were differentially activated at 2 and 24 h posthemorrhage and were inhibited by curcumin pretreatment. Serum aspartate transaminase estimates indicate decreased liver injury in curcumin-pretreated hemorrhage animals. These results suggest that protection against hemorrhage/resuscitation injury by curcumin pretreatment may result from the inactivation of transcription factors involved and regulation of cytokines to beneficial levels.
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal–regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor–α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.