Liposomes have been used as carriers for drugs, toxins, enzymes, proteins/peptides and other bioactive materials there are several liposomal formulations that are being investigated in preclinical and clinical trials. Achieving high encapsulation as well as retention of the encapsulated drug is very important in developing liposomes as drug carriers. A high drug-to-lipid ratio is likely to reduce the cost of formulations and also the risk of lipid-induced toxicity following their injection. Comparison of the encapsulation efficiency of the drug in liposomes with the therapeutic dose indicates whether, in principle, liposomes can be used as a delivery system for that drug. The optimization of the liposomal encapsulation of a drug is usually based on trial and error, rather than on a thorough investigation of the factors affecting it. To obtain optimum encapsulation of a drug into a liposomal preparation, parameters influencing both the liposome and the drug need to be carefully considered during the early stages of development. In this review, factors that affect encapsulation of drugs in liposomes such as liposome size and type, charge on the liposome surface, bilayer rigidity, method of preparation, remote loading, addition of ion pairing, and complexing agents and characteristics of the drug to be encapsulated are discussed.
The purpose of this study was to compare the various methods available to separate non-encapsulated drug from large unilamellar liposomes (LUV). Multilamellar liposomes (MLV) were prepared by thin film hydration using distearoylphosphatidylcholine:cholesterol (2:1 molar ratio). MLVs were passed through a 0.2 micron polycarbonate membrane using an extruder to prepare LUVs. Particle size of liposome preparations was characterized using a submicron particle-size analyser. The non-encapsulated drug was separated by: filtering through Centrifree tubes; passing through gel (Sepharose-4B and Sephadex G-25M); passing through minicolumn; ficoll density gradient; protamine aggregation; or dialysis. The dialysis method was found to be unsuitable for separation of non-encapsulated drug due to equilibration of encapsulated drug as the free drug was dialyzed. The upper limit for lipid concentration was 5 mg mL-1 using the Centrifree method. Separation using gel chromatography led to dilution of liposome preparation. Minicolumn and density gradient techniques did not lead to sample dilution, however the minicolumn method was tedious. The time required for separation of liposomes by protamine aggregation was longer for neutral liposomes. Thus it was concluded that the Centrifree was the fastest method to estimate encapsulation; the density gradient method was ideal to separate non-encapsulated drug; and protamine aggregation was the least expensive method to estimate encapsulation efficiency.
The severe toxicity and low therapeutic index of colchicine limit its therapeutic use. Encapsulation in liposomes might reduce these toxic effects. The objective of this study was to determine the factors influencing encapsulation of colchicine in liposomes and to optimize the encapsulation parameters. Colchicine was encapsulated in multilamellar liposomes and large unilamellar liposomes prepared using various phospholipids. The effects of method of preparation, type of vesicle, charge, and concentration of cholesterol on encapsulation of colchicine in liposomes were investigated. Also, stability of colchicine under stress conditions and at various temperatures, and in-vitro release characteristics were determined. A significant difference in encapsulation of colchicine in multilamellar liposomes was observed when prepared by two different methods. Induction of charge on the liposome surface increased encapsulation of colchicine in multilamellar liposomes, but did not affect large unilamellar liposomes. The liposome preparations could withstand simulated transport conditions and frequent changes in temperature. Particle size and concentration of colchicine did not change significantly during storage at various temperatures for six months. In order to retain encapsulated colchicine in liposomes, storage at or below room temperature was found to be suitable. In-vitro release of colchicine from large unilamellar liposomes was biphasic and was influenced by two rate-limiting barriers, the dialysis membrane and the liposome bi-layers. For optimum encapsulation and stability of colchicine liposomes were prepared from a mixture of 1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol and either stearylamine or dicetyl phosphate.
Abstract. The purpose of the present study was to control in vitro burst effect of the highly water-soluble drug, ropinirole hydrochloride to reduce in vivo dose dumping and to establish in vitro-in vivo correlation. The pharmacokinetics of two entirely different tablet formulation technologies is also explored in this study. For pharmacokinetics study, FDA recommends at least 10% difference in drug release for formulations to be studied but here a different approach was adopted. The formulations F8A and F9A having similar dissolution profiles among themselves and with Requip® XL™ (f 2 value 72, 77, 71 respectively) were evaluated. The C max of formulation F8A comprising hypromellose 100,000 cP was 1005.16 pg/ml as compared to 973.70 pg/ml of formulation F9A comprising hypromellose 4000 cP irrespective of T max of 5 and 5.75 h, respectively. The difference in release and extent of absorption in vivo was due to synergistic effect of complex RH release mechanism; however, AUC 0-t and AUC 0-∞ values were comparable. The level A correlation using the Wagner-Nelson method supported the findings where R 2 was 0.7597 and 0.9675 respectively for formulation F8A and F9A. Thus, in vivo studies are required for proving the therapeutic equivalency of different formulation technologies even though f 2 ≥50. The technology was demonstrated effectively at industrial manufacturing scale of 200,000 tablets.KEY WORDS: controlled release polymer; in vitro-in vivo correlation (IVIVC); multiple barrier layer tablets; pharmacokinetics; ropinirole hydrochloride (RH).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.