Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas species virulent on Arabidopsis. These sax genes are required to overwhelm isothiocyanate-based defenses and facilitate a disease outcome, especially in the young leaves critical for plant survival. Introduction of saxCAB genes into non-host strains enabled them to overcome these Arabidopsis defenses. Our study shows that aliphatic isothiocyanates, previously shown to limit damage by herbivores, are also crucial, robust, and developmentally regulated defenses that underpin non-host resistance in the Arabidopsis-Pseudomonas pathosystem.
SummaryAn immunological analysis of an Escherichia coli strain unable to synthesize the main pyruvate formate-lyase enzyme Pfl revealed the existence of a weak, crossreacting 85 kDa polypeptide that exhibited the characteristic oxygen-dependent fragmentation typical of a glycyl radical enzyme. Polypeptide fragmentation of this cross-reacting species was shown to be dependent on Pfl activase. Cloning and sequence analysis of the gene encoding this protein revealed that it coded for a new enzyme, termed TdcE, which has 82% identity with Pfl. On the basis of RNA analyses, the tdcE gene was shown to be part of a large operon that included the tdcABC genes, encoding an anaerobic threonine dehydratase, tdcD, coding for a propionate kinase, tdcF, the function of which is unknown, and the tdcG gene, which encodes a L-serine dehydratase. Expression of the tdcABCDEFG operon was strongly catabolite repressed. Enzyme studies showed that TdcE has both pyruvate formate-lyase and 2-ketobutyrate formate-lyase activity, whereas the TdcD protein is a new propionate/acetate kinase. By monitoring culture supernatants from various mutants using 1 H nuclear magnetic resonance (NMR), we followed the anaerobic conversion of L-threonine to propionate. These studies confirmed that 2-ketobutyrate, the product of threonine deamination, is converted in vivo by TdcE to propionyl-CoA. These studies also revealed that Pfl and an as yet unidentified thiamine pyrophosphate-dependent enzyme(s) can perform this reaction. Double null mutants deficient in phosphotransacetylase (Pta) and acetate kinase (AckA) or AckA and TdcD were unable to metabolize threonine to propionate, indicating that propionyl-CoA and propionyl-phosphate are intermediates in the pathway and that ATP is generated during the conversion of propionyl-P to propionate by AckA or TdcD.
Background: GlgE is a maltosyltransferase involved in bacterial ␣-glucan biosynthesis and is a genetically validated antituberculosis target. Results: We have determined the catalytic properties of Streptomyces coelicolor GlgE and solved its structure.
Conclusion:The enzyme has the same catalytic properties as Mycobacterium tuberculosis GlgE and the structure reveals how GlgE functions. Significance: The structure will help guide the development of inhibitors with therapeutic potential.
Hydroxycinnamic acid amides are a class of secondary metabolites distributed widely in plants. We have identified two sinapoyl spermidine derivatives, N-((4′-O-glycosyl)-sinapoyl),N′-sinapoylspermidine and N,N′-disinapoylspermidine, which comprise the two major polyamine conjugates that accumulate in Arabidopsis thaliana seed. Using metabolic profiling of knockout mutants to elucidate the functions of members of the BAHD acyltransferase family in Arabidopsis, we have also identified two genes encoding spermidine disinapoyl transferase (SDT) and spermidine dicoumaroyl transferase (SCT) activities. At2g23510, which is expressed mainly in seeds, encodes a spermidine sinapoyl CoA acyltransferase (SDT) that is required for the production of disinapoyl spermidine and its glucoside in Arabidopsis seed. The structurally related BAHD enzyme encoded by At2g25150 is expressed specifically in roots and has spermidine coumaroyl CoA acyltransferase (SCT) activity both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.