In the intestine, several growth factors stimulate migration of epithelial cells, contributing to the maintenance of tissue integrity. The Ras-like GTPase Rho regulates a signal transduction pathway linking growth factor receptors to the formation of actin stress fibers and focal adhesions, presumed to be important for motility.
The polyamines spermidine and spermine and their precursor putrescine are intimately involved in and are required for cell growth and proliferation. This study examines the mechanism by which polyamines modulate cell growth, cell cycle progression, and signal transduction cascades. IEC-6 cells were grown in the presence or absence ofdl-α-difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase, which is the first rate-limiting enzyme for polyamine synthesis. Depletion of polyamines inhibited growth and arrested cells in the G1 phase of the cell cycle. Cell cycle arrest was accompanied by an increase in the level of p53 protein and other cell cycle inhibitors, including p21Waf1/Cip1 and p27Kip1. Induction of cell cycle inhibitors and p53 did not induce apoptosis in IEC-6 cells, unlike many other cell lines. Although polyamine depletion decreased the expression of extracellular signal-regulated kinase (ERK)-2 protein, a sustained increase in ERK-2 isoform activity was observed. The ERK-1 protein level did not change, but ERK-1 activity was increased in polyamine-depleted cells. In addition, polyamine depletion induced the stress-activated protein kinase/c-Jun NH2-terminal kinase (JNK) type of mitogen-activated protein kinase (MAPK). Activation of JNK-1 was the earliest event; within 5 h after DFMO treatment, JNK activity was increased by 150%. The above results indicate that polyamine depletion causes cell cycle arrest and upregulates cell cycle inhibitors and suggest that MAPK and JNK may be involved in the regulation of the activity of these molecules.
Cell migration is the principal force behind the early restitution of erosions of the mucosa of the gastrointestinal tract. Despite the importance of cell migration to healing, no attempts to study the process in culture have been reported. We have attempted to standardize conditions for migration and test the migration responses of the small intestinal epithelial crypt cell line IEC-6 in some experimental situations already well known in vivo. We found good correspondence between in culture and in vivo on the following points: 1) migration was independent of DNA synthesis; 2) DNA synthesis was not concentrated at the wound edge; and 3) inhibition of actin polymerization stopped migration altogether. In addition, the presence of an extracellular matrix maximized migration. Protein inhibitors with different modes of action inhibited cell migration to different degrees, not always commensurate with their inhibition of protein synthesis. Cell surface proteoglycans were important; hyaluronic acid had an effect, but the secretion of a migration-stimulating substance by wounded cells was equivocal. Significantly, alpha-difluoromethylornithine (DFMO), which inhibits ornithine decarboxylase and polyamine synthesis, almost totally prevented cell migration. Because DFMO also prevents healing of mucosal erosions in vivo, we believe that this model can be used, keeping in mind its spatial limitations, to study the process of cell migration involved in the early restitution of mucosal erosions.
The polyamines have been under active investigation for nearly three decades. There is a great deal of evidence that they play an important role in gastrointestinal mucosal growth, but the mechanisms through which this role is carried out are still not fully explained. This review examines the role of the polyamines in the regulation of mucosal growth, the control of intracellular polyamine levels, the biosynthesis of the polyamines, and some known mechanisms of their action. Finally, we propose a model of polyamine action that reconciles the effects of various trophic agents and situations in which growth is stimulated along with concomitant changes in polyamine levels. It accounts for both humoral and gradient-oriented features of various adaptive responses of the gastrointestinal mucosa and is intended to provide a framework for the future investigation of the role of the polyamines in this tissue.
Direct exposure of small intestinal mucosal cells to luminal polyamines stimulates proliferation. This study tests the hypothesis that the protooncogenes c-fos, c-myc, c-jun, and junB are involved in the mechanism by which polyamines modulate mucosal growth. Studies were conducted in the IEC-6 cell line, derived from rat small intestinal crypt cells. Cells were grown in Dulbecco's minimal essential medium containing 5% dialyzed fetal bovine serum (dFBS) in the presence of absence of alpha-difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase, which is the rate-limiting enzyme for polyamine synthesis. Cellular polyamine levels, cell growth, and relative abundance of c-fos, c-myc, c-jun, and junB mRNAs, were measured at 1, 2, 4, 6, 8, and 12 days after initial plating. The intracellular polyamines, spermidine and spermine, and their precursor, putrescine, in DFMO-treated cells decreased significantly at 2 days and remained depleted thereafter. Although DFMO profoundly decreased growth and final cell number, both control and DFMO-treated cells entered a plateau phase by 6 days. In control cells, c-myc and c-jun mRNA levels significantly increased on days 4-6 and then returned to a basal level of expression, which was maintained thereafter. c-fos mRNA in quiescent cells after 24 h serum deprivation was significantly stimulated by 5% dFBS, although a steady-state level of c-fos mRNA was undetectable in control cells. Treatment with DFMO not only prevented increased expression of c-myc and c-jun protooncogenes at 4 days, but also significantly reduced steady-state levels of c-myc and c-jun mRNA between 6 and 12 days.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.