Opioid agonists have a broad range of effects on cells of the immune system, including modulation of the inflammatory response, and opioid and chemokine receptors are co-expressed by many white cells. Hetero-oligomerization of the human DOP opioid and chemokine CXCR2 receptors could be detected following their co-expression by each of co-immunoprecipitation, three different resonance energy transfer techniques and the construction of pairs of individually inactive but potentially complementary receptor G-protein α subunit fusion proteins. Although DOP receptor agonists and a CXCR2 antagonist had no inherent affinity for the alternative receptor when either receptor was expressed individually, use of cells that expressed a DOP opioid receptor construct constitutively, and in which expression of a CXCR2 receptor construct could be regulated, demonstrated that the CXCR2 antagonist enhanced the function of DOP receptor agonists only in the presence of CXCR2. This effect was observed for both enkephalin- and alkaloid-based opioid agonists, and the effective concentrations of the CXCR2 antagonist reflected CXCR2 receptor occupancy. Entirely equivalent results were obtained in cells in which the native DOP opioid receptor was expressed constitutively and in which expression of the isolated CXCR2 receptor could be induced. These results indicate that a CXCR2 receptor antagonist can enhance the function of agonists at a receptor for which it has no inherent direct affinity by acting as an allosteric regulator of a receptor that is a heterodimer partner for the CXCR2 receptor. These results have novel and important implications for the development and use of small-molecule therapeutics.
When expressed via an inducible promoter in human embryonic kidney 293 cells, the rat Mas-related gene D (rMrgD) receptor responded to -alanine but not L-alanine by elevating intracellular [Ca 2ϩ ], stimulating phosphorylation of the mitogenactivated protein kinases known as extracellular signal-regulated kinase (ERK) 1 and ERK2 and translocating from the plasma membrane to punctate intracellular vesicles. By contrast, the related rat Mas-related gene E (rMrgE) receptor did not respond to -alanine. Coexpression of rMrgD with rMrgE, which occurs in peripheral nociceptive neurons, allowed coimmunoprecipitation of the two receptors and resulted in the detection of cell surface rMrgD-rMrgE heterodimers via timeresolved fluorescence resonance energy transfer. These interactions increased the potency of -alanine to phosphorylate ERK1 and ERK2 as well as maintaining the capacity of -alanine to elevate intracellular [Ca 2ϩ ], which was reduced in magnitude and slowed in response with increasing times of expression of rMrgD in isolation. Associated with these effects, the presence of rMrgE restricted -alanine-induced internalization of rMrgD. This is the first report of heterodimeric interactions between members of the Mas-related gene (Mrg) receptor family and indicates that interactions between rMrgD and rMrgE modulate the function of rMrgD. Because the Mrg receptors are potential therapeutic targets in pain, these results suggest that efforts to understand the function and regulation of individual Mrg family receptors may require coexpression of relevant pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.