SummaryImmune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens.Video Abstract
SummaryCD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We compared the pharmacodynamics and killing activity of ceftazidime, administered by continuous infusion and intermittent bolus, against Pseudomonas aeruginosa ATCC 27853 and ceftazidime-resistant P. aeruginosa 27853CR with and without a single daily dose of amikacin in an in vitro infection model over a 48-h period. Resistance to ceftazidime was selected for by serial passage of P. aeruginosa onto agar containing increasing concentrations of ceftazidime. Human pharmacokinetics and dosages were simulated as follows: half-life, 2 h; intermittent-bolus ceftazidime, 2 g every 8 h (q8h) and q12h; continuous infusion, 2-g loading dose and maintenance infusions of 5, 10, and 20 g/ml; amikacin, 15 mg/kg q24h. There was no significant difference in time to 99.9% killing between any of the monotherapy regimens or between any combination regimen against ceftazidime-susceptible P. aeruginosa. Continuous infusions of 10 and 20 g/ml killed as effectively as an intermittent bolus of 2 g q12h and q8h, respectively. Continuous infusion of 20 g/ml and an intermittent bolus of 2 g q8h were the only regimens which prevented organism regrowth at 48 h, while a continuous infusion of 5 g/ml resulted in the most regrowth. All of the combination regimens exhibited a synergistic response, with rapid killing of ceftazidime-susceptible P. aeruginosa and no regrowth. Against ceftazidime-resistant P. aeruginosa, none of the ceftazidime monotherapy regimens achieved 99.9% killing. The combination regimens exhibited the same rapid killing of the resistant strain as occurred with the susceptible strain; however, regrowth occurred with all regimens. The combination regimens of continuous infusion of 20 g/ml plus amikacin and intermittent bolus q8h or q12h plus amikacin continued to be synergistic. Overall, continuous infusion monotherapy with ceftazidime at concentrations 4 to 5 and 10 to 15 times the MIC was as effective as an intermittent bolus of 2 g q12h (10 to 15 times the MIC) and q8h (25 to 35 times the MIC), respectively, against ceftazidime-susceptible P. aeruginosa. Combination therapy with amikacin plus ceftazidime, either intermittently q8h or by continuous infusion of 20 g/ml, appeared to be effective and exhibited synergism against ceftazidime-resistant P. aeruginosa.
Ten patients were treated with conventional dosing (CD) and continuous-infusion (CI) vancomycin therapy in this prospective, randomized, crossover study. Patients were randomized to receive either CD or CI therapy for 2 consecutive days and then crossed over to receive the opposite regimen for 2 days. CD therapy consisted of 1 g of vancomycin every 12 h. CI therapy consisted of a 500-mg loading dose followed by 2 g infused over 24 h. Ten serum samples were obtained on the second day of each therapy for pharmacokinetic and pharmacodynamic analyses. Two clinical isolates of Staphylococcus aureus, one methicillin sensitive (MSSA 1199) and one methicillin resistant (MRSA 494), were chosen for pharmacodynamic evaluation of both regimens. The patient demographics (means +/- standard deviations [SD]) were as follows: sex, six males, four females; age, 36 +/- 11 years; and serum creatinine, 0.72 +/- 0.18 mg/dl. Mean pharmacokinetic parameters +/- SD for CD therapy were as follows: elimination rate constant, 0.16 +/- 0.07 h-1; half-life, 5.6 +/- 3.5 h; volume of distribution, 33.7 +/- 25 liters, 0.5 +/- 0.2 liters/kg; maximum concentration in serum, 53.4 +/- 19.3 micrograms/ml; and minimum concentration, 8.4 +/- 5.9 micrograms/ml. The steady-state concentration for CI was 20.2 +/- 11.1 micrograms/ml. Overall, both regimens resulted in the MIC being exceeded 100% of the time. The mean CD trough serum bactericidal titer (SBT) was 1:8, and the average CI SBTs were 1:16 for both isolates. Even though there was no statistically significant difference between CD trough and CI SBTs, the CI SBTs remained > 1:8 for 100% of the time versus 60% of the time for CD therapy. During CI therapy, 20 and 40% of the patients maintained SBTs of > 1:32 throughout the dosing interval for MSSA 1199 and MRSA 494, respectively. During CD therapy, however, only 10% of patients maintained SBTs of > 1:32 during the entire dosing interval for both isolates. The mean areas under the bactericidal titer-time curve (AUBC24s) +/- SD for MSSA 1199 were 528 +/- 263 for CD therapy and 547 +/- 390 for CI therapy. The mean AUBC24s +/- SD against MRSA 494 were 531 +/- 247 for CD and 548 +/- 293 for CI therapy. Similar to the AUBC24, the mean area under the concentration-time curve for a 24-h dosing interval divided by the MIC (AUC/MIC24) ratios +/- SD were 550.0 +/- 265.7 for CD and 552.6 +/- 373.4 for CI therapy, respectively. No statistically significant differences were found between any of the pharmacodynamic parameters for CD and CI therapy. In addition, no adverse effects with either CD or CI therapy were observed during the study. We conclude that CI and CD vancomycin therapy demonstrated equivalent pharmacodynamic activities. Although CI therapy was more likely to result in SBTs that remained above 1:8 for the entire regimen, the clinical impact of this result is unknown. Serum drug concentration variability was observed with both treatment regimens but to a lesser extent with CI administration. CI administration of vancomycin should be further evaluated to determine the clinical utility of this method of administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.