Chromosomal microarray (CMA) is recommended as a first tier investigation for patients with developmental delay (DD), intellectual disability (ID), autistic spectrum disorder (ASD), and multiple congenital anomalies (MCA). It is widely used in the prenatal and postnatal settings for detection of chromosomal aberrations. This is a retrospective review of all array comparative genomic hybridization (aCGH/ array CGH) findings ascertained in two major prenatal and postnatal genetic diagnostic centers in Hong Kong from June 2012 to December 2017. Medical records were reviewed for cases with pathogenic and variants of uncertain clinical significance (VUS). Classification of copy number variants (CNVs) was based on current knowledge and experience by August 2018. The aims of this review are to study the diagnostic yield of array CGH application in prenatal and postnatal settings in Hong Kong and to describe the spectrum of abnormalities found. Prenatal indications included abnormal ultrasound findings, positive Down syndrome screening, abnormal noninvasive prenatal test results, advanced maternal age and family history of chromosomal or genetic abnormalities. Postnatal indications included unexplained DD, ID, ASD, and MCA. A total of 1,261 prenatal subjects and 3,096 postnatal patients were reviewed. The prenatal diagnostic yield of pathogenic CNV and VUS (excluding those detectable by karyotype) was 3.5%. The postnatal diagnostic yield of pathogenic CNV was 15.2%. The detection rates for well-defined microdeletion and microduplication syndromes were 4.6% in prenatal and 6.1% (1 in 16 index patients) in postnatal cases, respectively. Chromosomes 15, 16, and 22 accounted for over 21 and 25% of pathogenic CNVs detected in prenatal and postnatal cohorts, respectively. This review provides the first large scale overview of genomic imbalance of mostly Chinese patients in prenatal and postnatal settings.
Kenny–Caffey syndrome (KCS) type 2 (OMIM 127000) is a rare syndromic cause of hypoparathyroidism which is characterized by proportionate short stature, long bone abnormalities, delayed closure of anterior fontanelle, eye abnormalities, and normal intelligence. It is caused by variants in FAM111A (NM_001942519.1). In this review, we reported the first Chinese patients, a pair of monozygotic twins, with genetically confirmed KCS type 2 with over 20 years follow‐up. We summarized the clinical features of 14 previously reported and genetically confirmed KCS type 2 patients; our twin patients exhibited a unique spinal manifestation which could be an important age‐dependent feature of KCS type 2. In this review, over 60% KCS type 2 patients had dental problem and over 80% suffered from refractive errors or structural eye abnormalities. Therefore, early dental, ophthalmological, and orthopedic assessments are warranted for KCS type 2 patients. Micro‐orchidism, previously reported in KCS type 2 patients, was also detected in our patients. The possibility of subfertility should be considered in male KCS type 2 patients. A multidisciplinary management approach for this rare syndrome is recommended.
Kabuki syndrome (OMIM #147920 and 300867) is a rare genetic disorder characterized by a distinctive facial gestalt, intellectual disability and multiple congenital anomalies. We summarized the clinical features and molecular findings of the Kabuki syndrome (KS) patients diagnosed in Hong Kong between January 1991 and December 2019. There were 21 molecularly confirmed KS. Twenty of them were due to pathogenic KMT2D variants and one patient had KDM6A deletion. Nine KMT2D variants were novel. The clinical phenotype of our Chinese KS patients was largely comparable with that reported in patients of other ethnicities. This study expands the mutation spectrum but also provide important natural history information of Chinese KS in literature.
Objectives Kabuki syndrome (KS) is a genetic disorder characterized by intellectual disability, facial dysmorphism and congenital anomalies. We aim to investigate the prenatal features of fetuses with KS and to provide a comprehensive review of the literature on prenatal sonographic abnormalities associated with KS. Methods We retrospectively reviewed the prenatal ultrasound findings of all mothers of children with molecularly confirmed KS in Hong Kong, between 1991 and 2019. We also performed systematic review of the literature to identify studies on the prenatal findings in KS. Results We identified 11 cases with KS with detectable fetal ultrasound findings ranging from no detectable abnormalities to a variety of non‐specific findings including increased nuchal translucency, pleural effusion, cardiac anomalies, renal anomalies, intrauterine growth restriction, polyhydramnios, oligohydramnios and single umbilical artery. In combining our cases with the 77 cases published, 42 (50.6%) of them had more than one abnormal antenatal ultrasound finding. The most frequent ultrasound features observed were cardiac anomalies (49.4%), followed by polyhydramnios (28.9%), genitourinary anomalies (26.5%), single umbilical artery (15.7%), intrauterine growth restriction (14.5%) and hydrops fetalis/pleural effusion/ascites (12.0%). Conclusions These cases demonstrate the prenatal phenotypic heterogeneity associated with KS. Although the ultrasound abnormalities are non‐specific, KS should be considered in the differential diagnosis when these fetal findings following normal microarray analysis/karyotyping.
RASopathies are a group of genetic disorders due to dysregulation of the RAS‐MAPK signaling pathway, which is important in regulating cell growth, proliferation, and differentiation. These include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), cardiofaciocutaneous (CFC) syndrome, and Costello syndrome (CS), clinical manifestations include growth retardation, developmental delay, cardiac defects, and specific dysmorphic features. There were abundant publications describing the genotype and phenotype from the Western populations. However, detailed study of RASopathies in Chinese population is lacking. We present here the largest cohort of RASopathies ever reported in Chinese populations, detailing the mutation spectrum and clinical phenotypes of these patients. The Clinical Genetic Service, Department of Health, and Queen Mary Hospital are tertiary referral centers for genetic disorders in Hong Kong. We retrospectively reviewed all the genetically confirmed cases of RASopathies, including NS, NSML, CFC syndrome, and CS, over the past 29 years (from 1989 to 2017). Analyses of the mutation spectrum and clinical phenotypes were performed. One hundred and ninety‐one ethnic Chinese patients with genetically confirmed RASopathies were identified, including 148 patients with NS, 23 NSML, 12 CFC syndrome, and eight CS. We found a lower incidence of hypertrophic cardiomyopathy in individuals with NSML (27.3%), and NS caused by RAF1 mutations (62.5%). Another significant finding was for those NS patients with myeloproliferative disorder, the mutations fall within Exon 3 of PTPN11 but not only restricted to the well‐known hotspots, that is, p.Asp61 and p.Thr731, which suggested that re‐evaluation of the current tumor surveillance recommendation maybe warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.