The polarized Raman spectra in different environments along with the IR counterpart of 4-benzoylpyridine (4-BOP) were critically analyzed to assign all of its normal modes of vibration. The knowledge of the positions of different excited electronic states (EESs)was obtained from the study of electronic absorption spectra. Measurement of Raman excitation profiles (REPs)of several normal modes was carried out to get insight into structural and symmetry properties of the molecule. All the experimental observations were substantiated and corroborated theoretically by quantum chemical calculations (QCCs). The possibility of exciton splitting of the 1 L a band has been explored both from theoretical and experimental points of view.
Raman excitation profiles of several normal modes of 2-benzoylpyridine were measured, and the structural changes encountered on excitations, excited state symmetries, and vibronic couplings among various excited electronic states of the molecule were investigated. Vibrational spectroscopic studies of the molecule were done in detail, and critical investigation on the electronic spectra of the molecule was also carried out. It is shown that the experimentally allowed transitions, corresponding to the band around 262 and 238 nm, occur to the excited states, where the major geometry changes involve both ring CC/CN and CO stretching vibrations. An excited state lying around 185 nm above the ground state was also found to play an important role in the scattering process. All necessary and valuable quantum chemical calculations accompany the presented spectral studies.
Nanocrystalline complex of CoCl 2 • 6H 2 O−2-benzoyl pyridine is prepared by chemical route. Each component of the desired complex is identified by analysing the X-ray diffractograms. Energy-dispersive X-ray analysis (EDX) data confirmed the presence of the desired elements of the sample. Theoretical optimized structure of the complex was derived using ab initio density functional level of theory (DFT) method of calculation. The average nanocrystallite size estimated from the XRD data is ∼43 nm. Static magnetic property of the complex is studied in the temperature range from 300 K down to 14 K. The estimated magnetic moment of the complex is high when compared to that of the free ion magnetic moment of Co 2+ and this is attributed to the less effect of the crystal field acting on the ion in the organic complex due to which orbital moments are not fully quenched. The magnetic property of the complex is also remarkably enhanced compared to that of the diamagnetic 2-benzoyl pyridine which may be suitable for applications in devices. FTIR and Raman spectra of the ligand, 2-benzoyl pyridine and the synthesized complex are recorded at room temperature, which not only confirm the presence of each phase in the complex, but some interesting results are also extracted from the analyses of different Raman active modes of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.