The purpose of this study was to investigate the characteristics of center of pressure (COP) trajectory during table tennis topspin forehand loop between superior and intermediate players. Twenty-six male table tennis players with two different skilled level participated in this test. Novel Pedar insole plantar pressure measurement system was used to record COP displacement. Subjects were asked to perform crosscourt forehand loop against the topspin ball with maximal power. The motion was divided into two phases as backswing and forward swing. Compared to intermediate players, superior players showed significantly larger medial-lateral COP displacement at backward-end and significantly smaller anterior-posterior displacement at both backward and forward ends. In addition, the ratio of COP velocity between forward swing and backswing was much higher for superior subjects. Results indicated that superior players possessed better foot drive technique and ability of foot motion control during forehand loop. These characteristics are beneficial for coaches to develop special training schemes in improving forehand loop performance.
Initial observations have indicated that each movement pattern or skill set has a fundamental mechanical structure. The purpose of this study was to examine biomechanical characteristics in the chasse step movement patterns between professional athletes (PA) and beginner players (BP). Large data sets were obtained for comparison by capturing kinematic and kinetic information of the dominant foot using the Oxford Foot Model (OFM) during table tennis strokes. Nine male PA and nine BP (all with dominant right feet) participated in a table tennis footwork test. A Vicon motion analysis system and a Novel Pedar insole plantar pressure measurement system were used to record kinematic and kinetic data, respectively. Findings from the study indicated that PA not only showed significantly larger forefoot and rear-foot dorsiflexion, but also demonstrated larger hallux plantarflexion. Also, PA showed significantly larger forefoot inversion and abduction at the forward-end of the step. Peak pressure values were higher under the lateral forefoot, and the medial and lateral rear-foot with faster changes in angular velocity recorded for PA during the chasse step phase. Greater peak pressures were also recorded under the other toes, and in the central and lateral forefoot during the forward swing phase when compared to BP. The results of the present study demonstrated that PA possessed greater foot drive technique. These findings may help coaches and beginners to comprehend the internal mechanisms of the chasse step technique and assist beginners in improving the mechanical efficiency of their performance.
BackgroundThe table tennis serve involves complex spatial movements combined with biomechanial characteristics. Although the differences in lower-limb biomechanial characteristics to a great extent influence the translational and spinning velocity of the ball when using the different styles of table tennis serve, few researchers have studied their mechanics. Therefore, the aim of this study was to investigate the differences in lower-limb activity between the squat and standing serves during a table tennis short serve.MethodsTen advanced female table tennis participants performed a squat serve and standing serve in random order. A Vicon motion analysis system and a Novel Pedar insole plantar pressure measurement system were used to record kinematics and kinetics data, respectively.ResultsKey findings from the study were that the squat serve not only showed significantly larger hip and knee flexion, as well as ankle dorsiflexion, it also showed significantly larger hip adduction and external knee rotation, with larger changing angular rate of the lower limb joints in the sagittal and the transverse planes when the two serving styles were compared. In addition, the force-time integral (FTI) was higher in the rear foot area for the standing serve.DiscussionThe results demonstrated that the squat serve needs higher lower limb drive during a table tennis short serve compared with a standing serve. These biomechanical considerations may be beneficial for table tennis athletes and coaches as a method of optimizing performance characteristics during both competition and training.
BackgroundPrior to the 2017 table tennis season, each participant performed the anterior, posteromedial, and posterolateral the star excursion balance test (SEBT) reach distances in a randomized order. The aim of this study was to assess the effects of table tennis multi-ball training and dynamic balance on performance measures of the SEBT for the male and female.MethodsThe limb lengths of the 12 table tennis athletes were measured bilaterally in the study. Besides warm-up end, the data of this study were recorded at a regular interval at approximately 16 min for the entire multi-ball training session, and they were defined as Phase I, Phase II, Phase II, respectively. The Borg rating of perceived exertion (RPE) scale was used to document the degree of physical strain.ResultsReaching distances showed a decrease with training progression in all directions. Compared with the male table tennis athletes, the females showed poorer dynamic posture control, particularly when the free limb was considered with the right-leg stance toward posterolateral and posteromedial directions in phase I.DiscussionThis study suggests that during table tennis multi-ball training the male should have a regulatory protocol to compensate the deficit observed in phase II, but the females should be given the protocol in phase I.
Background and objectives: The popularity of table tennis has increased globally. As a result, the biomechanical movement patterns in the lower limb during table tennis have attracted extensive attention from coaches, scientists and athletes. The purpose of this study was to compare the differences between the long and short chasse steps in table tennis and evaluate risk factors related to injuries in the lower limb. Materials and Methods: Twelve male elite athletes performed forehand topspin strokes with long and short chasse steps in this study, respectively. The kinematics data of the lower-limb joints were measured by a Vicon motion analysis system. The electromyograms (EMG) of six lower-limb muscles were recorded using a myoelectricity system. Results: The key findings were that the angle change rate of the ankle in the long chasse step was faster with a larger range of motion (ROM) in the coronal and transverse planes. The hip was also faster in the sagittal and transverse planes but slower in the coronal plane compared with the short chasse step. In addition, the vastus medialis (VM) was the first activated muscle in the chasse step. Conclusions: The hip and ankle joints in the long chasse step and the knee joint in the short chasse step have higher susceptibility to injury. Moreover, tibialis anterior (TA), vastus medialis (VM) and gastrocnemius (GM) should be sufficiently stretched and warmed prior to playing table tennis. The results of this study may provide helpful guidance for teaching strategies and providing an understanding of potential sport injury mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.