The theoretical formulation given in this article allows the vacuum ultraviolet (VUV) production efficiency to be calculated from the electron temperature of the plasma and the gas parameters including gas mixing ratio, excitation energies, and excitation cross sections using the separately determined conversion efficiency of the plasma input power into the electron heating power. The VUV production efficiencies calculated for (Ne+Xe) mixture (neon (Ne) and xenon (Xe) mixture) discharge gases using the formulation show that the efficiency can be increased by decreasing the electron temperature and by increasing the amount of Xe in the gas mixture. A method for determining the electron temperature of the plasma display panel (PDP) plasma from emission intensity measurements was also given, and was used to show that the electron temperature in the ordinary PDP plasma is 3 eV.
A generalized analytical method to determine the density of energy states of electron emission source (EES) is devised by using a thermal excitation and emission model for an exoelectron in the MgO layer and the emission time constants of the exoelectron extracted from experimental stochastic distributions of discharge delay time. When applied to Si-doped MgO, the emission time constant of the exoelectron from the Si EES becomes shorter at high temperature and at short time intervals due to thermal excitation. The density of energy states of the Si EES DSi(E) shows the main peak at 736 meV, a satellite peak at 601 meV, and broad energy structures over the range of 586–896 meV. The effective number of Si EES is 5.5 times larger than that in purified MgO. The excitation energy in a Si-doped MgO cluster with a crystal structure is obtained to be 0.83 eV by using the symmetry-adapted-cluster configuration interaction method and the Si EES contributes to exoelectron emission. The thermal excitation is governed by the transition from the Si–O bound state and the Mg edge state to the antisymmetrical edge states and the extended surface state. The excitation energy in an MgO cluster with a Si-doped atom inside and a nearest oxygen vacancy taking account of structural relaxation is calculated to be 0.75 eV, which shows good agreement with the main peak in DSi(E). The excitation energies of 0.64, 0.73, and 0.78 eV are also obtained in an MgO cluster with a Si-doped atom at the surface and a nearest oxygen vacancy. The first excitation energy corresponds with the satellite peak. The broad energy structures of DSi(E) are caused by the dependence of excitation energy on the position of Si-doped atoms inside and at the surface of the MgO cluster, and on the interatomic distance of Si–O due to structural relaxation. The energy structures can be also attributed to the thermal excitation to the various symmetrical Mg edge states and the surface states. When the number of complex structures of the Si EES with adjacent oxygen vacancies increases, oxygen vacancies are generated from the complex structures and the increase in the electron traps degrades electron emission rate. Therefore, the number of complex structures has an optimum value that leads to the maximum effective number of Si EES.
An analytical method to study the discharge-radiation dynamics (DRD) in alternating current plasma display panels was developed. The input parameters for this DRD analysis were experimentally determined panel voltage and current wave forms. Discharge voltage, current, and power wave forms in the discharge volume of a cell were first obtained from the measured panel voltage and current wave forms using known geometrical configurations and electric circuit calculations. Intrinsic discharge parameters, such as electron temperature and density, were then determined to satisfy these discharge wave forms under the assumption of a hydrodynamic approach. A one-dimensional discharge structure with two regions (cathode fall and positive column) and several other assumptions which are plausible from the discharge physics point of view were also adopted. These assumptions took account of known cross sections and energies of electron-impact excitation and ionization of discharge gas atoms, and a secondary electron emission coefficient of the dielectric surface at the cathode side induced by ion bombardment. Radiation intensities from the discharge were calculated using the determined intrinsic discharge parameters, and the results were compared with those measured for the respective panel conditions used in the calculations, yielding a fair agreement. The luminous efficiency, defined as the radiation intensity divided by the discharge power, was also determined using the intrinsic discharge parameters. Discussion on the luminous efficiency change for different panel operating conditions revealed that the efficiency improvement at a lower voltage was attributable to a lower electron temperature for this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.