Fish protein hydrolysate (FPH) is the enzymatic hydrolysis of protein into smaller peptide and free amino acids, which has recently captured considerable attention as a supplementary ingredient in the aqua-feed industry sector. The present research aimed to observe the physiological, biochemical, and bacteriological study of FPH-treated diets and its effects on growth, hematology, plasma biochemistry, liver and gut histopathology, and resistance to Aeromonas hydrophila infection in Pabda (Ompok pabda). Four experimental diets (35% crude protein) were formulated with graded FPH supplementation (0, 0.5, 1, and 2%). The feed physiological parameters such as expansion ratio, bulk density, water stability, and floatability were not significantly affected by dietary FPH levels (p > 0.05), except for the pellet durability index (PDI). Furthermore, the diets with 1% and 2% FPH were more palatable to fish than other treatment diets. The total bacteria (TB) in fish diets and guts followed an increasing trend with the increase in various levels of FPH in diets. The significantly highest body weight, specific growth rate (SGR), total biomass (TB), survival rate (SR), condition factor (CF), and hepatosomatic index (HSI) were noted in 2% FPH-fed fish when compared with other treatment groups (p < 0.05). The feed intake of fish was significantly increased when increasing the FPH in diets (p < 0.05). The fish fed with a 2% FPH diet had significantly higher neutrophil, monocyte, lymphocyte, red blood cell, and platelet levels (p < 0.05). The blood glucose, creatinine, total protein, and globulin were significantly lower in control fish compared to other treatment groups (p < 0.05). The histopathological observation of mid intestine tissues displayed that 2% of FPH-diet-fed fish had a well-anchored epithelial wall with well-arranged goblet cells, a long villus structure, stratum compactum, and tunica muscularis compared to other treatments of FPH. The inclusion of FPH in diets up to 2% significantly improved the liver health of fish. The fish fed with 2% FPH had a significantly lower cumulative percent mortality (16.67%) against A. hydrophila infection in the bacterial challenge test (p < 0.05). Therefore, the present results suggested that using 2% FPH in the aqua-feed industry improves the growth performance, health status, and disease resistance of Pabda fingerlings in captivity.
The identification and development of a new plant-based feed ingredient as an alternative protein source to FM have gained the interest of the aquafeed industrial players. Therefore, this study aimed to investigate the physical, biochemical, and bacteriological properties of dietary FWM and the impacts on the growth and reproductive performances of farmed female stinging catfish, H. fossilis broodstock. Five experimental diets were formulated with different FWM inclusion (0, 25, 50, 75, and 100%). Fatty acid profiles such as 4:0, 10:0, 20:0, 21:0, 22:0, 24:0, 20:1n9, 18:3n6, 20:3n6, 20:4n6, and 22:6n3 were found in higher levels in FWM compared to the water spinach meal (WM). Meanwhile, there were no significant differences in the physical properties of the FWM experimental diets (p > 0.05). Furthermore, the experimental feed with 0, 25, 50, and 75% FWM were more palatable to the broodstock than 100% FWM. The number of total bacteria (TB) and lactic acid bacteria (LAB) in catfish diets exhibited a rising trend with an increase in FWM, while 50% of FWM-fed fish intestines had a significantly (p < 0.05) higher TB and LAB than other treatment groups. The growth, feed utilization, and reproductive variables of H. fossilis were significantly (p < 0.05) influenced by FWM inclusion at various levels. Moreover, the significantly (p < 0.05) highest oocytes weight, fertilization, egg ripeness, and ovipositor diameter were observed in the treatment of 50% FWM diet treatment group. In addition, the spawning response was 100% in all treatments except for the control group (66.67%). Significant differences (p < 0.05) were found in the hematological and serum biochemical indices in most treatment groups. In addition, the histological analysis of H. fossilis midintestinal tissue indicated that the fish fed with a 50% FWM diet had an unbroken epithelial barrier with more goblet cell arrangements and a well-organized villi structure and tunica muscularis compared to other treatment groups. These outcomes suggested that FWM at 50% inclusion is an adequate protein supplement for fish feed, resulting in better growth, reproductive performance, and health of H. fossilis broodstock development.
Marine fish farm industries face ongoing challenges due to a lack of quality seed, a low survival rate and a slow growth rate of marine fish larvae. One of the most sensitive problems is a nutritionally balanced quality feed for rearing these larval fish at the first feeding stage. Many studies have reported high requirements of n-3 highly unsaturated fatty acids, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for proper development, which have also been reported to increase the survival and growth status of larval fish. Marine fish larvae have difficulties accepting artificial feed at their weaning stage, so live food plays a vital role in the rearing process. Artemia is one of the most commonly used live food organisms in marine fish larvae production systems. However, they are deficient in EPA and DHA, which are most critical for larval development. Recent advancements in live food production systems have developed several techniques of bio-encapsulation and enrichment of nutrients in live food. But the instability of DHA and the high cost of enrichment procedures remain-bottlenecks for supplying proper nutrients through live food. This short review emphasizes challenges in marine fish larvae culture in terms of HUFAs nutrition with a comparative study on DHA requirements of marine larval fish and its availability in live food organism Artemia. We also highlighted several factors affecting DHA enrichment process and its degradation following enrichment procedures.
Long-whiskered catfish Sperata aor is a freshwater catfish known for its supreme flesh quality and fast growth, whose captive-reared broodstock denotes a difficult challenge for aquaculture. The reproductive dysfunctions in long-whiskered catfish raised in tank conditions were observed by comparing tissue biochemical composition and ovarian histology of wild female broodstock. Sixty (60) female broodstocks were used in the current study, consisting of 30 reared at sandy-muddy soil tank bottoms in captive conditions and 30 wild individuals collected from the haor basin during the breeding season. The fish reproductive state was investigated using the biometric and reproductive parameters, biochemical composition and levels of amino acids in the different tissues, and histological analysis of ovarian development. Results revealed that the biometrical parameters of wild and captive female broodstocks exhibited no remarkable difference (p > 0.05). Nevertheless, the wild fish had remarkably higher (p < 0.05) GSI (8.73%), oocyte weight (0.45 mg/egg), and ripeness (27.08%) in comparison with captive-reared broodstock. The total length and body weight, body weight and ovary weight, ovipositor diameter and ovary weight, and GSI and HSI displayed a positive relationship with R2 = 1, R2 = 1, R2 = 0.993, and R2 = 0.973, respectively, for wild broodstock, while R2 = 0.994, R2 = 0.806, R2 = 0.804, and R2 = 0.896, respectively, for captive broodstock. Additionally, the proximate composition in oocytes and liver tissues in both broodstocks did not differ significantly (p > 0.05). However, two essential amino acids (EAA), i.e., lysine and phenylalanine, and two non-essential amino acids, i.e., glutamic acid and glycine, were highly significant differences (p < 0.05) in the oocytes and liver of wild broodstock compared to the captive-reared broodstock. On the other hand, the EAA, e.g., isoleucine, threonine, leucine, and arginine, were highly dominated in both wild and captive female brood oocytes and liver. The ovarian histological slides from each fish group showed three oocytes developmental stages that indicated the asynchronous-reproductive ovarian oocytes of this fish. This study may be useful to fully understand the factors affecting the spawning and reproduction of S. aor broodstock, crucial for management in captive conditions as well as conservation and protection for sustainable aquaculture management of S. aor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.