This study focused on the potential therapeutic effect of baicalin on collagen-induced arthritis (CIA) in rats and the underlying mechanisms. The CIA rats were injected with baicalin (50, 100, or 200 mg/kg) once daily for 30 days. The rats were monitored for clinical severity of arthritis, and joint tissues were used for radiographic assessment and histologic examination. We quantified tumor necrosis factor-a (TNF-a) and interleukin-1b (IL-1b) in experimental animals and used Western blots to assess levels of protein abundance, phosphorylation, and acetylation of nuclear factor (NF)-kB p65 and sirtuin 1 (sirt1) protein expression in joint tissues. Human fibroblast-like synoviocytes from rheumatoid arthritis (HFLS-RA) were adopted in further mechanistic investigations. Baicalin intraperitoneal injection for 30 days dose-dependently blocked clinical manifestations of CIA, such as functional impairment and swollen red paws. Meanwhile, it alleviated collageninduced joint inflammation injury and inhibited the secretion of TNF-a and IL-1b in both rat synovium and HFLS-RA. Further mechanistic investigations revealed that baicalin suppresses NF-kB p65 protein expression and phosphorylation in synovial tissue and human-derived synoviocytes. Moreover, the acetylation of NF-kB p65 was downregulated by baicalin, which negatively correlates with the baicalin-induced upregulation of sirt1 expression in the same conditions. The data indicate that CIA in rats can be alleviated by baicalin treatment via relieving joint inflammation, which is related to the suppression of synovial NF-kB p65 protein expression and the elevation of its deacetylation by sirt1.
Tumor associated neutrophils (TANs) play important roles in the progress of CRC. Since tumor microenvironments could influence the phenotypes of TANs, altering the tumor microenvironment to polarize the phenotype of TANs may be a new strategy for tumor treatment. This study aims to investigate the effect of anti-TGF-β on the polarization of TANs from a pro-tumor phenotype towards an anti-tumor phenotype in CRC. In this work, CRC patients had more infiltration of TANs and higher expression of TGF-β in CRC tissue when compared with the controls. In vitro, SW480 cells were co-cultured with primed neutrophils, which simulated the TANs in the tumor microenvironment, and TGF-β was blocked by anti-TGF-β (1D11) in order to polarize TANs. Anti-TGF-β treatment increased the cytotoxicity of TANs and decreased the metastatic chemoattractants secreted by TANs, and ultimately increased the apoptosis of CRC cells significantly while remarkably suppressing the migration of tumor cells. The changes of signaling pathways in the TANs and tumor cells were explored. The results showed that anti-TGF-β attenuated CRC may be partly mediated by suppression of PI3K/AKT signaling pathways in TANs and partly mediated by suppression of TGF-β/Smad signaling pathways in tumor cells. Furthermore, the tumor in the mice treated with 1D11 was obviously smaller and had reverse tumorigenesis compared with the controls, while neutrophil depletion reduced the anti-tumor effect of 1D11. Our data suggest that anti-TGF-β attenuates tumor growth via the polarization of TANs to an anti-tumor phenotype in CRC, which provides new strategies for CRC treatment.
Background Aberrant STAT1 signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell proliferation and survival. However, the role of STAT1 signaling in HCC and its underlying mechanism remain elusive.MethodsWe transiently transfected pcDNA3.1-STAT1 and STAT1 siRNA into SMMC7721 and HepG2 cells. Western blot and qRT-PCR examined the expression of protein and RNA of target genes. Cell viability was assessed using MTT assay, and cell cycle and apoptosis were analyzed by flow cytometry.ResultsWe found that STAT1 overexpression increased protein expression of p53 and Fbxw7, and downregulated the expression of cyclin A, cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Conversely, ablation of STAT1 had the opposite effect on p53, Fbxw7, Hes-1, NF-κB p65, cyclin A, cyclin D1, cyclin E and CDK2, and improved the viability of SMMC7721 and HepG2 cells.ConclusionsOur data indicate that STAT1 exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis, and may provide a basis for the design of new therapies for the intervention of HCC in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.