A novel dual-pH sensitive charge-reversal strategy is designed to deliver antitumor drugs targeting to tumor cells and to further promote the nuclei internalization by a stepwise response to the mildly acidic extracellular pH (≈6.5) of a tumor and endo/lysosome pH (≈5.0). Poly(L-lysine)-block-poly(L-leucine) diblock copolymer is synthesized and the lysine amino residues are amidated by 2,3-dimethylmaleic anhydride to form β-carboxylic amide, making the polypeptides self-assemble into negatively charged micelles. The amide can be hydrolyzed when exposed to the mildly acidic tumor extracellular environment, which makes the micelles switch to positively charged and they are then readily internalized by tumor cells. A nuclear targeting Tat peptide is further conjugated to the polypeptide via a click reaction. The Tat is amidated by succinyl chloride to mask its positive charge and cell-penetrating function and thus to inhibit nonspecific cellular uptake. After the nanoparticles are internalized into the more acidic intracellular endo/lysosomes, the Tat succinyl amide is hydrolyzed to reactivate the Tat nuclear targeting function, promoting nanoparticle delivery into cell nuclei. This polypeptide nanocarrier facilitates tumor targeting and nuclear delivery simultaneously by simply modifying the lysine amino residues of polylysine and Tat into two different pH-sensitive β-carboxylic amides.
Tumor-associated macrophages (TAMs)
usually display the tumor-promoting
M2 phenotype rather than the tumoricidal M1 phenotype. Thus, M2-to-M1
repolarization of TAMs has emerged as a promising strategy for tumor
immunotherapy nowadays. However, immune side effects remain a great
challenge, because phenotypic conversion of macrophages into the proinflammatory
M1 phenotype may also be induced in normal tissue. Here, aiming at
repolarizing TAMs without altering the M1/M2 polarization balance
in healthy organs, we develop a micellar nanodrug with M2-targeting
peptides (M2peptide) hidden in the pH-sheddable PEG corona so that
an active targeting of M2-like macrophages is triggered only in the
acidic tumor microenvironment (TME). The smart nanodrug effectively
functions M2-to-M1 repolarization via M2-targeted codelivery of IKKβ
siRNA and STAT6 inhibitor AS1517499 (AS), which suppresses the tumor
growth and metastasis. Moreover, immune side effects are reduced because
the neutral-pH environment in healthy organs does not trigger a “stealth-to-nonstealth”
conversion of the nanodrug essential for M2-targeted drug delivery.
The response to programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) blockade in cancer immunotherapy is limited because of multiple immune evasion mechanisms. Here, a previously unknown strategy is proposed to synergize the nuclear factor κB (NF-κB) inhibition and PD-1 blockade for antitumor immunotherapy. A dual pH-sensitive nanocarrier loading curcumin (CUR) and anti–PD-1 monoclonal antibody (aPD-1) may bind to circulating PD-1+ T cells and then follow their infiltration into the tumor. Furthermore, the nanodrug bound to PD-1+ T cells may be released in the tumor microenvironment, leaving aPD-1 to block PD-1 on T cells and generating a CUR-encapsulated cationic nanodrug that can be easily taken up by tumor cells/tumor associated macrophages (TAMs). Thus, not only the antitumor T cells mediate efficient CUR delivery to tumor but also the efficient CUR delivery promotes the tumor infiltration of antitumor T cells, thereby resulting in effective activation of antitumor immunity.
Hypoxia leads to up‐regulation of PD‐L1 and decreases T lymphocyte infiltration, thus boosting immunotherapeutic resistance of tumors. Moreover, tumor‐infiltrating myeloid cells such as myeloid‐derived suppressor cells (MDSCs) correlate with potent immune suppressive activity and resistance to the immune checkpoint blocking (ICB) in tumor sites. Here, a multifunctional nanoregulator incorporating MnO
2
particles and small molecular IPI549 is developed, which can reshape the tumor immune microenvironment (TIME) to unleash the immune system. The intravenously administered nanoregulator effectively accumulates in tumor sites to alleviate hypoxia via oxygen‐generating reduction of MnO
2
and to inhibit PI3Kγ on MDSCs via IPI549 release in the tumor microenvironment (TME), which results in concurrent downregulation of PD‐L1 expression, polarization of tumor associated macrophages (TAMs) toward pro‐inflammatory M1‐like phenotype (tumor‐suppressive), enhanced infiltration of CD4
+
helper T lymphocytes (Th cells), and cytotoxic CD8
+
T lymphocytes (Tc cells), and suppressed infiltration of regulatory T lymphocytes (T
reg
cells) for effective tumor immunotherapy. Furthermore, the local generation of Mn
2+
in TME allows tumor‐specific magnetic resonance imaging (MRI). More excitingly, the nanoregulator‐reshaped TIME is effectively reserved due to the synergistic effect of hypoxia alleviation and MDSC PI3Kγ inhibition, leading to remarkable post‐medication inhibition of tumor re‐growth and metastasis in an animal study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.