Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions.
The P2Y receptor family is a class of G protein-coupled receptors activated primarily by adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP) and uridine diphosphate (UDP). The P2Y12 receptor is expressed on platelets which mediates platelet aggregation and morphological changes. At the same time, during the process of vascular remodeling and atherosclerosis, ADP can also promote the migration and proliferation of vascular smooth muscle and endothelial cells through P2Y12 receptor activating. Furthermore, P2Y12 is involved in many signal transductions processes, such as intimal hyperplasia, monocyte infiltration and so on, which play an important role in immune inflammation and brain injury. In order to solve the diseases induced by P2Y12 receptor, inhibitors such as ticagrelor, clopidogrel were widely used for cardiovascular diseases. However, there were some problems, such as limited antithrombotic effect, remain unsolved. This article summarizes the role and molecular mechanism of P2Y12 receptors in the pathogenesis of cardiovascular-related diseases, providing in-depth expounding on the molecular mechanism of P2Y12 receptor inhibitors and contributing to the treatment of diseases based on P2Y12 receptors.
Cordyceps farinosa, an entomopathogenic fungus, infects and leads to high mortality of Thitarodes armoricanus larvae. T. armoricanus larvae die soon after the infection of C. farinose, usually before the colonization of Ophiocordyceps sinensis owing to competitive inhibition and fruiting body formation. Therefore, monitoring C. farinosa in the O. sinensis cultivation environment is critical for minimizing the C. farinosa infection-induced losses. In this study, we initially designed a PCR primer pair (Tar-1F/Tar-1R) through Open Reading Frame prediction and homology comparison of the C. farinosa genome sequence. This primer pair can detect both C. farinosa and Samsoniella hepiali. To further distinguish, primers (ITS5-172/ITS4-95) were then designed to selectively amplify the large ribosomal subunit sequences in the C. farinosa genome. All these primers were applied in combination for detection of C. farinosa in soil samples. The sensitivity reached a detection limit of 1 106 spores/g soil. In addition, these primers can detect the presence of C. farinosa in dead T. armoricanus larval samples. This newly established rapid detection method provides important information for C. farinosa control during O. sinensis cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.