For the building energy consumption models with complex scale sensitivity, it is difficult to achieve ideal prediction effect with single-granularity prediction model. Therefore, this paper proposed a multigranularity MgHa-LSTM model based on convolutional recurrent neural network, including a multigranularity feature extraction module and a long-term dependency capture module. Multigranularity feature extraction included granularity segmentation, feedback mechanism, and parallel convolutional modules, which can capture short-term scale sensitivity dependencies. Long-term dependency capture consists of a hybrid attention mechanism and long-short term memory layers, which are able to capture long-term dependencies. For building energy consumption patterns with different scale sensitivity, MgHa-LSTM, MLP, CNN, LSTM, and MsC-LSTM models were constructed on the IHEPC building energy consumption dataset used in this paper for comparative experiments. The experimental results showed that on the IHEPC dataset, the MSE of the building energy consumption prediction model is 0.2821 based on the MgHa-LSTM model proposed in this paper, which is equivalent to 93.72% of the MsC-LSTM model with the smallest MSE among other deep learning prediction models. Compared with other deep learning prediction models, the prediction results of the MgHa-LSTM building energy consumption prediction model are more accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.