A broadband, low-loss and polarization-insensitive 3 dB optical power splitter based on adiabatic tapered silicon waveguides is proposed and investigated. 3D-FDTD simulation results show that the splitter achieves an output transmission efficiency of nearly 50% over an ultra-broad wavelength range from 1200 to 1700 nm. The device is fabricated, and experimental results show that the splitter exhibits a low excess loss of <0.19 dB for the TE polarization and <0.14 dB for the TM polarization over the entire measured wavelength range from 1530 to 1600 nm, while having an adiabatic taper length of only 5 μm. In addition, the measured power uniformity of the cascaded 1×8 splitter is only 0.47 dB, and 0.17 dB for the TE and TM polarizations, respectively. With the advantages of low loss, broad bandwidth, and compact size, the proposed splitter is a promising element for large-scale silicon integrated photonic circuits.
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiC f /SiC) composites are attractive candidate materials for aerospace engine system and nuclear reactor system. In this paper, SiC f /SiC composites were fabricated by polymer infiltration and pyrolysis (PIP) process using KD-S fiber as the reinforcement and the LPVCS as the precursor, while the BN interface layer was introduced by chemical vapor deposition (CVD) process using borazine as the single precursor. The effect of the BN interface layer on the structure and properties of the SiC f /SiC composites was comprehensively investigated. The results showed that the BN interface layer significantly improved the mechanical properties of the KD-S SiC f /SiC composites. The flexure strength and fracture toughness of the KD-S SiC f /SiC composites were evidently improved from 314±44.8 to 818±39.6 MPa and 8.6± 0.5 to 23.0±2.2 MPa·m 1/2 , respectively. The observation of TEM analysis displayed a turbostratic structure of the CVD-BN interface layer that facilitated the improvement of the fracture toughness of the SiC f /SiC composites. The thermal conductivity of KD-S SiC f /SiC composites with BN interface layer was lower than that of KD-S SiC f /SiC composites without BN interface layer, which could be attributed to the relative low thermal conductivity of BN interface layer with low crystallinity.
Dear Editor, We investigated whether screening by whole genome sequencing (WGS) in unselected newborns provides more information of potentially curable or treatable medical conditions than routine newborn screening (NBS). We demonstrated that compared with routine NBS, WGS produced fewer false positive results and identified more actionable pathogenic or likely pathogenic variants in the selective 246 genes.Previously, WGS has been used to identify mutated genes in newborn children with a suspected disease. 1 However, sequencing of apparently healthy newborns has remained controversial due to technical concerns and ethical issues. 2 In this study, 321 non-pre-selected newborns from a cohort of pregnant women in Qingdao, China were recruited (Table 1). DNA from 303 umbilical cord blood samples and 18 umbilical cords was extracted for 40X WGS. For data interpretation, we selected 251 genes associated with 59 Mendelian disorders, 164 primary immunodeficiency diseases (PIDs) and five pharmacogenetic (PGx) genes, following the guidelines by the Recommended Uniform Screening Panel (RUSP), the International Union of Immunologic Societies (IUIS) Expert Committee for Primary Immunodeficiency, the Dutch Pharmacogenetics Working Group (DPWG), and the Clinical Pharmacogenetics Implementation Consortium (CPIC). [3][4][5] Sequencing protocol, data analysis pipeline, and criteria for sequence variants interpretation following the ACMG/AMP guidelines are described in the Supporting Information. The WGS results were compared with NBS results, including the mandatory checks of hearing impairment and four metabolic diseases, the metabolic testing of 48 inherited metabolic diseases (IMDs), and the genetic screening for 20 hearing loss loci incorporated into the local NBS program in China. 6,7 Among the analysed DNA samples of 321 newborns, the average sequencing depth was 47.42X (28. 84X-82.90X) This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
We introduce a filter using a noise-free quantum buffer with large optical bandwidth that can both filter temporal-spectral modes, as well as inter-convert them and change their frequency. We show that such quantum buffers optimally filter out temporal-spectral noise; producing identical single-photons from many distinguishable noisy single-photon sources with the minimum required reduction in brightness. We then experimentally demonstrate a noise-free quantum buffer in a warm atomic system that is well matched to quantum dots and can outperform all intensity (incoherent) filtering schemes for increasing indistinguishability. * dylan.saunders@physics.ox.ac.uk, ian.walmsley@physics.ox.ac.uk dominant mode residual modes arXiv:1902.07720v1 [quant-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.