The Fe-Cr-C coatings with different levels of Nb addition were prepared on carbon steel by a plasma transferred arc (PTA) weld-surfacing process and their microstructure and properties were investigated. As the Nb content increases from 8.96% to 12.55%, the coating gradually changes from a hypereutectic structure (martensite, austenite matrix, primary NbC and eutectic γ+M7C3) to a near eutectic structure (γ+M7C3 and NbC) and finally a hypoeutectic structure (primary γ, γ+M7C3 and NbC). As the Nb content increases, the hardness and wear resistance of the coating first increase and then decrease, which is closely related to the NbC volume fraction first increasing and then the NbC size coarsening. The Fe-Cr-C coating with 11.65% Nb balances the NbC content and size, and has the highest hardness and best wear resistance. As the Nb content increases further, the formation and aggregation of coarse NbC carbides in the coating results in high brittleness of the coating, which may cause the carbide particles to peel off the coating during the wear process, thereby reducing wear resistance.
This data article presents the torsion parameters and the microstructural data of the (CrCoNi)97Al1.5Ti1.5 medium-entropy alloy (MEA). The data presented in this article are related to the research article entitled “Microstructure and mechanical properties of (CrCoNi)
97
Al
1.5
Ti
1.5
medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures”, see Ref.
[1]
. This article can be used for data analysis and interpretation and their comparison with other data sets in the research articles. The microstructure and the element distributions of the as-swaged rods were obtained using a scanning electron microscope (SEM) equipped with electron channelling contrast imaging (ECCI), electron diffraction spectroscopy (EDS) and electron backscattered diffraction (EBSD) detectors. The phases of the MEA before and after torsion are determined by the X-ray diffractometer (XRD) techniques. Optical micrograph, inverse pole figure (IPF) map, grain boundary map and misorientation angle distribution and pole figure of the as-swaged sample were presented. I In order to provide data reference for future torsion experiments, this article draws schematic diagrams of the hot-swaged rod, dimensions of the torsion/tensile specimens, liquid nitrogen (@LN) environment torsion device and schematic representation for characterization locations of microstructure. Lastly, Kernel Average Misorientation (KAM) maps and misorientation angle distribution of various samples or different strained layers were used for comparative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.