A novel bone scaffold containing bioceramic and biopolymer materials with an osteoinductive simvastatin molecule was developed to enhance bone regeneration. An oxidized cellulose nanofiber (OCNF)–Gelatin (Gel) hydrogel was loaded into a biphasic calcium phosphate (BCP) ceramic in which simvastatin was entrapped, resulting in a scaffold with both osteoconductive and osteoinductive properties. The fabricated scaffold showed interconnected porosity with micro‐ and macroporous orientation. After loading the OCNF–Gel (HG), the mechanical stability of the ceramic BCP scaffold was increased suitable for the application of hard tissue regeneration. Fourier‐transform infrared spectroscopy showed that simvastatin was successfully coated on the BCPHG scaffolds. OCNF, with its slower degradation, may contribute to the sustained release of drug from the scaffold. Initially simvastatin was released from the scaffold at high levels, then was constantly and gradually released for up to 4 weeks. Pre‐osteoblast MC3T3E1 cells were seeded on the scaffolds to investigate cell viability, morphology, and differentiation. The simvastatin‐loaded BCPHG‐S scaffolds showed better cell proliferation and spreading compared to other scaffolds. Immunostaining assays showed the expression of proteins responsible for osteogenic differentiation. Alkaline phosphatase and osteopontin were more highly expressed in the BCPHG‐S scaffold than in other scaffolds. These results suggest that simvastatin‐loaded BCPHG scaffolds provided physiological environments suitable for better osteogenic differentiation.
Hyperglycemia plays a key role in the development of microvascular complications, endothelial dysfunction (ED), and inflammation. It has been demonstrated that cathepsin S (CTSS) is activated in hyperglycemia and is involved in inducing the release of inflammatory cytokines. We hypothesized that blocking CTSS might alleviate the inflammatory responses and reduce the microvascular complications and angiogenesis in hyperglycemic conditions. In this study, we treated human umbilical vein endothelial cells (HUVECs) with high glucose (HG; 30 mM) to induce hyperglycemia and measured the expression of inflammatory cytokines. When treated with glucose, hyperosmolarity could be linked to cathepsin S expression; however, many have mentioned the high expression of CTSS. Thus, we made an effort to concentrate on the immunomodulatory role of the CTSS knockdown in high glucose conditions. We validated that the HG treatment upregulated the expression of inflammatory cytokines and CTSS in HUVEC. Further, siRNA treatment significantly downregulated CTSS expression along with inflammatory marker levels by inhibiting the nuclear factor-kappa B (NF-κB) mediated signaling pathway. In addition, CTSS silencing led to the decreased expression of vascular endothelial markers and downregulated angiogenic activity in HUVECs, which was confirmed by a tube formation experiment. Concurrently, siRNA treatment reduced the activation of complement proteins C3a and C5a in HUVECs under hyperglycemic conditions. These findings show that CTSS silencing significantly reduces hyperglycemia-induced vascular inflammation. Hence, CTSS may be a novel target for preventing diabetes-induced microvascular complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.