Localization and mapping are key requirements for autonomous mobile systems to perform navigation and interaction tasks. Iterative Closest Point (ICP) is widely applied for LiDAR scan-matching in the robotic community. In addition, the standard ICP algorithm only considers geometric information when iteratively searching for the nearest point. However, ICP individually cannot achieve accurate point-cloud registration performance in challenging environments such as dynamic environments and highways. Moreover, the computation of searching for the closest points is an expensive step in the ICP algorithm, which is limited to meet real-time requirements, especially when dealing with large-scale point-cloud data. In this paper, we propose a segment-based scan-matching framework for six degree-of-freedom pose estimation and mapping. The LiDAR generates a large number of ground points when scanning, but many of these points are useless and increase the burden of subsequent processing. To address this problem, we first apply an image-based ground-point extraction method to filter out noise and ground points. The point cloud after removing the ground points is then segmented into disjoint sets. After this step, a standard point-to-point ICP is applied into to calculate the six degree-of-freedom transformation between consecutive scans. Furthermore, once closed loops are detected in the environment, a 6D graph-optimization algorithm for global relaxation (6D simultaneous localization and mapping (SLAM)) is employed. Experiments based on publicly available KITTI datasets show that our method requires less runtime while at the same time achieves higher pose estimation accuracy compared with the standard ICP method and its variants.
Model-free reinforcement learning is a powerful and efficient machine-learning paradigm which has been generally used in the robotic control domain. In the reinforcement learning setting, the value function method learns policies by maximizing the state-action value (Q value), but it suffers from inaccurate Q estimation and results in poor performance in a stochastic environment. To mitigate this issue, we present an approach based on the actor-critic framework, and in the critic branch we modify the manner of estimating Q-value by introducing the advantage function, such as dueling network, which can estimate the action-advantage value. The action-advantage value is independent of state and environment noise, we use it as a fine-tuning factor to the estimated Q value. We refer to this approach as the actor-dueling-critic (ADC) network since the frame is inspired by the dueling network. Furthermore, we redesign the dueling network part in the critic branch to make it adapt to the continuous action space. The method was tested on gym classic control environments and an obstacle avoidance environment, and we design a noise environment to test the training stability. The results indicate the ADC approach is more stable and converges faster than the DDPG method in noise environments.
Global Navigation Satellite System (GNSS) provides accurate positioning data for vehicular navigation in open outdoor environment. In an indoor environment, Light Detection and Ranging (LIDAR) Simultaneous Localization and Mapping (SLAM) establishes a two-dimensional map and provides positioning data. However, LIDAR can only provide relative positioning data and it cannot directly provide the latitude and longitude of the current position. As a consequence, GNSS/Inertial Navigation System (INS) integrated navigation could be employed in outdoors, while the indoors part makes use of INS/LIDAR integrated navigation and the corresponding switching navigation will make the indoor and outdoor positioning consistent. In addition, when the vehicle enters the garage, the GNSS signal will be blurred for a while and then disappeared. Ambiguous GNSS satellite signals will lead to the continuous distortion or overall drift of the positioning trajectory in the indoor condition. Therefore, an INS/LIDAR seamless integrated navigation algorithm and a switching algorithm based on vehicle navigation system are designed. According to the experimental data, the positioning accuracy of the INS/LIDAR navigation algorithm in the simulated environmental experiment is 50% higher than that of the Dead Reckoning (DR) algorithm. Besides, the switching algorithm developed based on the INS/LIDAR integrated navigation algorithm can achieve 80% success rate in navigation mode switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.