This paper presents a novel high-efficiency three-port bidirectional DC–DC converter for photovoltaic (PV) systems. A PV system’s output is stepped up to supply a DC bus or DC load while charging the battery. When the PV output is insufficient, the battery voltage is stepped up to the DC bus; when the DC bus has excess energy, it is stepped down to charge the battery. Thus, a high-efficiency three-port bidirectional step-up/step-down converter is achieved. A common-core coupled inductor was designed and adopted in the proposed converter. Power switches and diodes in the circuit are shared to achieve bidirectional operation. In step-up mode, the clamp capacitor is used to reduce the voltage spike on the main switches. Moreover, the voltage-doubling capacitor recovers energy from the secondary-side leakage inductance. Furthermore, the input capacitors recover the primary-side leakage inductance energy in step-down mode. Thus, the converter can improve its conversion efficiency. Finally, this paper details the implementation of a 500 W three-port bidirectional converter to verify the feasibility and the practicability of the proposed topology. According to the measurement results, the highest efficiency levels of the PV and the battery in step-up mode were 94.3% and 94.1%, respectively; the highest efficiency in step-down mode was 95.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.