The chloric acid method is most commonly used to obtain accurate and reproducible measurements of iodine and remove interfering substances. Unfortunately chloric acid is a potential hazard, requiring an explosion-proof hood, among other precautions. We have developed a simple, convenient, and economic method for measuring urinary iodine by using 1 mol/L ammonium persulfate, a nonexplosive, nonhazardous chemical, as the oxidizing reagent. The oxidation procedure can be completed in 30 min at a temperature of 91-95 degrees C. The iodine in the urine is then measured by a modification of the traditional colorimetric method of Sandell and Kolthoff. Urine samples (110) collected from a mixed population of healthy males and females, ranging in age from 6 to 79 years and living in the US, were analyzed for urine iodine content by two methods: the proposed ammonium persulfate method and the chloric acid method. The ammonium persulfate method has an intraassay CV of 9.1% at 0.42 +/- 0.04 micromol/L (mean +/- SD), 7.8% at 1.46 +/- 0.11 micromol/L, and 4.0% at 3.54 +/- 0.14 micromol/L. The interassay CV is 10.2% at 0.46 +/- 0.05 micromol/L, and 7.9% at 3.27 +/- 0.26 micromol/L. Recovery of iodine added to urine in vitro was 107%, 94%, and 97% for 0.42 micromol/L, 0.77 micromol/L and 3.64 micromol/L, respectively. The lower limit of detectability was 0.0034 microgram of iodine. Values for iodine in 110 urines measured by the reference chloric acid method ranged from 0.06 to 8.03 micromol/L and by the ammonium persulfate method from 0.05 to 7.4 micromol/L. The persulfate method (y) correlated extremely closely with the reference chloric acid method (x) by the Pearson correlation (y = 0.923x + 0.810 micromol/L, and r = 0.994, Sy/x = 1.841).
We studied the effect of various doses of sodium iodide on thyroid radioiodine uptake in euthyroid volunteers by giving single doses of 10, 30, 50, and 100 mg and then daily doses of 10, 15, 30, 50, or 100 mg for 12 days thereafter. All single doses above 10 mg suppressed 24-hour thyroid uptake of 123I to 0.7 to 1.5 per cent. Continued daily administration of 15 mg of iodide or more resulted in values consistently below 2 per cent. A small but statistically significant fall in serum thyroxine (T4) and triiodothyronine (T3) and a rise in serum thyrotropin (TSH) concentrations were observed after eight and 12 days of iodide treatment. These data suggest that the thyroid uptake of radioactive iodine can be markedly suppressed by single-dose administration of 30 mg of stable iodide and that suppression can be maintained with daily doses of at least 15 mg. This study provides guidelines for stable iodide prophylaxis in the event of exposure to radioactive iodine.
In 1948, Wolff and Chaikoff reported that organic binding of iodide in the thyroid was decreased when plasma iodide levels were elevated (acute Wolff-Chaikoff effect), and that adaptation or escape from the acute effect occurred in approximately 2 days, in the presence of continued high plasma iodide concentrations. We later demonstrated that the escape is attributable to a decrease in iodide transport into the thyroid, lowering the intrathyroidal iodine content below a critical inhibitory threshold and allowing organification of iodide to resume. We have now measured the rat thyroid sodium/iodide symporter (NIS) messenger RNA (mRNA) and protein levels, in response to both chronic and acute iodide excess, in an attempt to determine the mechanism responsible for the decreased iodide transport. Rats were given 0.05% NaI in their drinking water for 1 and 6 days in the chronic experiments, and a single 2000-microg dose of NaI i.p. in the acute experiments. Serum was collected for iodine and hormone measurements, and thyroids were frozen for subsequent measurement of NIS, TSH receptor, thyroid peroxidase (TPO), thyroglobulin, and cyclophilin mRNAs (by Northern blotting) as well as NIS protein (by Western blotting). Serum T4 and T3 concentrations were significantly decreased at 1 day in the chronic experiments and returned to normal at 6 days, and were unchanged in the acute experiments. Serum TSH levels were unchanged in both paradigms. Both NIS mRNA and protein were decreased at 1 and 6 days after chronic iodide ingestion. NIS mRNA was decreased at 6 and 24 h after acute iodide administration, whereas NIS protein was decreased only at 24 h. TPO mRNA was decreased at 6 days of chronic iodide ingestion and 24 h after acute iodide administration. There were no iodide-induced changes in TSH receptor and thyroglobulin mRNAs. These data suggest that iodide administration decreases both NIS mRNA and protein expression, by a mechanism that is likely to be, at least in part, transcriptional. Our findings support the hypothesis that the escape from the acute Wolff-Chaikoff effect is caused by a decrease in NIS, with a resultant decreased iodide transport into the thyroid. The observed decrease in TPO mRNA may contribute to the iodine-induced hypothyroidism that is common in patients with Hashimoto's thyroiditis.
Beneficial effects of probiotics in acute infectious diarrhoea in children are mainly seen in watery diarrhoea and viral gastroenteritis. Lactobacillus rhamnosus, one the most extensively studied probiotic strains, is effective in shortening courses of acute diarrhoea in children. However, the dose-dependent effect of Lactobacillus upon quantification of faecal rotavirus shedding in humans remains little known. Thus, an open-label randomized trial in 23 children with acute rotaviral gastroenteritis was undertaken by randomly allocating patients to receive one of the three regimens for 3 days: daily Lactobacillus rhamnosus 35 (Lcr35) with 0 CFU/day to six patients in the control group, 2 x 10(8) CFU/day to nine patients in the low-dose group, and 6 x 10(8) CFU/day to eight patients in the high-dose group. Faecal samples were collected before and after the 3-day regimen for measurements of rotavirus concentrations by ELISA. There was no statistically significant change in faecal rotavirus concentrations in either the control group (119.2 x 10(5) particles/ml vs. 23.7 x 10(5) particles/ml, p = 0.075) or the low-dose group (36.1 x 10(5) particles/ml vs. 73.5 x 10(5) particles/ml, p = 0.859). However, the high-dose group had a significant reduction of faecal rotavirus concentration (64.2 x 10(5) particles/ml vs. 9.0 x 10(5) particles/ml, p = 0.012). Without any exception, the faecal rotavirus concentrations of all eight patients in the high-dose Lcr35 group declined by 86% after 3 days when compared with those before Lcr35 administration. In conclusion, this is the first report to provide quantitative evidence of the dose-dependent effect of Lactobacillus rhamnosus, a minimal effective dose of 6 x 10(8) CFU for 3 days, upon the faecal rotavirus shedding in paediatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.