Purpose Invasion is the critical step in progression of a pre-cancerous lesion to squamous cell carcinoma of the head and neck (SCCHN). Invasion is regulated by multiple pro-inflammatory mediators. Tristetraprolin (TTP) is an mRNA degrading protein that regulates multiple pro-inflammatory mediators. TTP may serve as an excellent treatment target. Rap1 is a ras-like oncoprotein that induces critical signaling pathways. In this study, the role of rap1 in TTP-mediated invasion was investigated. Experimental Design Using complementary approaches we modulated TTP and altered expression of IL-6 and MMP2/9, which were quantified by ELISA and zymogram. Invasion was evaluated in vitro using the Oral-Cancer-Equivalent (OCE) 3D model and in vivo in the chick chorioallantoic membrane (CAM). The role of rap1 and p38 were established using knockdown strategies. Results Downregulation of TTP significantly increased invasion via secretion of MMP9/2 and IL-6. In the novel OCE and CAM invasion models of SCCHN, cells with downregulated TTP destroyed the basement membrane to invade the underlying connective tissue. Rap1 induces p38 mitogen activated protein kinase (p38)-mediated inactivation of TTP. Inactive TTP enhances transcript stability via binding to the 3′-UTR. High IL-6 and MMP9 are prognostic for poor clinical outcomes in SCCHN patients. Conclusions Targeting the rap1-p38-TTP cascade is an attractive novel treatment strategy in SCCHN to concurrently suppress multiple mediators of invasion.
Nonlinear optical molecular imaging and quantitative analytic methods were developed to non-invasively assess the viability of tissue-engineered constructs manufactured from primary human cells. Label-free optical measures of local tissue structure and biochemistry characterized morphologic and functional differences between controls and stressed constructs. Rigorous statistical analysis accounted for variability between human patients. Fluorescence intensity-based spatial assessment and metabolic sensing differentiated controls from thermally-stressed and from metabolically-stressed constructs. Fluorescence lifetime-based sensing differentiated controls from thermally-stressed constructs. Unlike traditional histological (found to be generally reliable, but destructive) and biochemical (non-invasive, but found to be unreliable) tissue analyses, label-free optical assessments had the advantages of being both non-invasive and reliable. Thus, such optical measures could serve as reliable manufacturing release criteria for cell-based tissue-engineered constructs prior to human implantation, thereby addressing a critical regulatory need in regenerative medicine.
Mitochondrial manganese superoxide dismutase (Mn-SOD) is the primary cellular defense against damaging superoxide radicals generated by aerobic metabolism and as a consequence of inflammatory disease. Elevated expression of Mn-SOD therefore provides a potent cytoprotective advantage during acute inflammation. Mn-SOD contains a GC-rich and TATA/CAAT-less promoter characteristic of a housekeeping gene. In contrast, however, Mn-SOD expression is dramatically regulated in a variety of cells by numerous proinflammatory mediators, including lipopolysaccharide, tumor necrosis factor-␣, and interleukin-1. To understand the underlying regulatory mechanisms controlling Mn-SOD expression, we utilized DNase I-hypersensitive (HS) site analysis, which revealed seven hypersensitive sites throughout the gene. Following high resolution DNase I HS site analysis, the promoter was found to contain five HS subsites, including a subsite that only appears following stimulus treatment. Dimethyl sulfate in vivo footprinting identified 10 putative constitutive protein-DNA binding sites in the proximal Mn-SOD promoter as well as two stimulus-specific enhanced guanine residues possibly due to alterations in chromatin structure. In vitro footprinting data implied that five of the binding sites may be occupied by a combination of Sp1 and gut-enriched Krü ppel-like factor. These studies have revealed the complex promoter architecture of a highly regulated cytoprotective gene.
Diverse pro-inflammatory mediators regulate transcription of the gene (MnSOD) encoding the mitochondrial anti-oxidant protein manganese-superoxide dismutase. Understanding the regulation of this gene is crucial to comprehending its role in cytoprotection. In transfected lung epithelial cells, a human-growth-hormone reporter gene system was utilized to identify a potential enhancer in the MnSOD genomic fragment previously shown to contain multiple DNase-I-hypersensitive sites. Northern analysis demonstrated a 10-20-fold increase in response to pro-inflammatory mediators. Inclusion of the MnSOD genomic fragment in reporter constructs was necessary to mimic these stimulus-dependent endogenous levels. The inducible enhancer element was localized to a 260 bp fragment in intron 2, coinciding with a previously defined DNase-I-hypersensitive site. This element functions in an orientation- and position-independent manner as well as with the heterologous thymidine kinase promoter. In addition, we have demonstrated that a homologous sequence within the human MnSOD gene exhibits identical enhancer activity. A novel characteristic of the rat and human enhancer elements involves the ability to promote cytokine-inducible transcription in the absence of a classical promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.