The Jordan-Wigner transformation plays an important role in spin models. However, the nonlocality of the transformation implies that a periodic chain of N spins is not mapped to a periodic or an anti-periodic chain of lattice fermions. Since only the N − 1 bond is different, the effect is negligible for large systems, while it is significant for small systems. In this paper, it is interesting to find that a class of periodic spin chains can be exactly mapped to a periodic chain and an antiperiodic chain of lattice fermions without redundancy when the Jordan-Wigner transformation is implemented. For these systems, possible high degeneracy is found to appear in not only the ground state, but also the excitation states. Further, we take the one-dimensional compass model and a new XY-XY model (σxσy − σxσy) as examples to demonstrate our proposition. Except for the well-known one-dimensional compass model, we will see that in the XY-XY model, the degeneracy also grows exponentially with the number of sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.