Aux/IAA proteins are short-lived nuclear proteins that repress expression of primary/early auxin response genes in protoplast transfection assays. Repression is thought to result from Aux/IAA proteins dimerizing with auxin response factor (ARF) transcriptional activators that reside on auxin-responsive promoter elements, referred to as AuxREs. Most Aux/IAA proteins contain four conserved domains, designated domains I, II, III, and IV. Domain II and domains III and IV play roles in protein stability and dimerization, respectively. A clear function for domain I had not been established. Results reported here indicate that domain I in Aux/IAA proteins is an active repression domain that is transferable and dominant over activation domains. An LxLxL motif within domain I is important for conferring repression. The dominance of Aux/IAA repression domains over activation domains in ARF transcriptional activators provides a plausible explanation for the repression of auxin response genes via ARF-Aux/IAA dimerization on auxin-responsive promoters
Summary• CONSTANS is an evolutionarily-conserved central component of the genetic pathway that controls the onset of flowering in response to daylength. However, the specific biochemical mechanism by which the CONSTANS protein regulates the expression of its target genes remains largely unknown.• By using a combination of cell-based expression analysis and in vitro DNA binding studies, we have demonstrated that CONSTANS possesses transcriptional activation potential and is capable of directly binding to DNA.• CONSTANS was found to bind DNA via a unique sequence element containing a consensus TGTG(N2-3)ATG motif. This element is present in tandem within the FLOWERING LOCUS T promoter and is sufficient for CO binding and activity. The conserved CCT (CONSTANS, CONSTANS-like and TOC1) domain of CONSTANS was shown to be required for its recruitment to the DNA motif and other CCTcontaining proteins were also found to have the ability to regulate gene expression via this element.• The CCAAT box, which has been previously hypothesized as a recruitment site for complexes containing the CONSTANS protein, potentiated CONSTANSmediated activation but was not essential for CONSTANS recruitment to a target promoter or for its activity as a transcriptional factor.
Aux/IAA genes are early auxin response genes that encode short-lived nuclear proteins with four conserved domains, referred to as I, II, III, and IV. Arabidopsis Aux/IAA proteins repressed transcription on auxin-responsive reporter genes in protoplast transfection assays. Mutations in domain II resulted in increased repression, whereas mutations in domains I and III partially relieved repression. Aux/IAA proteins fused to a heterologous DNA binding domain were targeted to promoters of constitutively expressed reporter genes and actively repressed transcription in an auxinresponsive and dose-dependent manner. In comparison with an unfused luciferase protein, luciferase fused to Aux/IAA proteins displayed less luciferase activity, which further decreased in the presence of auxin in transfected protoplasts. Domain II mutations increased and domain I mutations decreased luciferase activity with the fusion proteins. These results suggested that Aux/IAA proteins function as active repressors by dimerizing with auxin response factors bound to auxin response elements and that early auxin response genes are regulated by auxin-modulated stabilities of Aux/ IAA proteins.
Auxin is a key plant hormone that regulates plant development, apical dominance, and growth-related tropisms, such as phototropism and gravitropism. In this study, we report a new Arabidopsis thaliana transcription factor, MYB77, that is involved in auxin response. In MYB77 knockout plants, we found that auxin-responsive gene expression was greatly attenuated. Lateral root density in the MYB77 knockout was lower than the wild type at low concentrations of indole-3-acetic acid (IAA) and also under low nutrient conditions. MYB77 interacts with auxin response factors (ARFs) in vitro through the C terminus (domains III and IV) of ARFs and the activation domain of MYB77. A synergistic genetic interaction was demonstrated between MYB77 and ARF7 that resulted in a strong reduction in lateral root numbers. Experiments with protoplasts confirmed that the coexpression of MYB77 and an ARF C terminus enhance reporter gene expression. R2R3 MYB transcription factors have not been previously implicated in regulating the expression of auxin-inducible genes. Also it was previously unknown that ARFs interact with proteins other than those in the Aux/IAA family via conserved domains. The interaction between MYB77 and ARFs defines a new type of combinatorial transcriptional control in plants. This newly defined transcription factor interaction is part of the plant cells' repertoire for modulating response to auxin, thereby controlling lateral root growth and development under changing environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.