Volatility prediction in the financial market helps to understand the profit and involved risks in investment. However, due to irregularities, high fluctuations, and noise in the time series, predicting volatility poses a challenging task. In the recent Covid-19 pandemic situation, volatility prediction using complex intelligence techniques has attracted enormous attention from researchers worldwide. In this paper, a novel and simple approach based on the robust least squares method in two approaches a) with least absolute residuals (LAR) and b) without LAR, have been applied to the Chicago Board Options Exchange (CBOE) Volatility Index (VIX) for a period of ten years. For a deeper analysis, the volatility time series has been decomposed into long-term trends, and seasonal, and random fluctuations. The data sets have been divided into parts viz. training data set and testing data set. The validation results have been achieved using root mean square error (RMSE) values. It has been found that robust least squares method with LAR approach gives better results for volatility (RMSE = 0.01366) and its components viz. long term trend (RMSE = 0.10087), seasonal (RMSE = 0.010343) and remainder fluctuations (RMSE = 0.014783), respectively. For the first time, generalized prediction equations for volatility and its three components have been presented. Young researchers working in this domain can directly use the presented prediction equations to understand their data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.