Emotion Detection is one of the most emerging issues in human machine interaction. Detecting emotional state of a person from textual data is an active research field along with recognizing emotions from facial and audio information. Several methods were given to recognize emotion from text in previous years. This paper proposed a new architecture (a keyword based approach) to recognize emotions from text. In case of recognizing emotion from a piece of text document or a blog, any human can do this better than a machine only problem is he/she takes time. Proposed emotion detector system takes a text document and the emotion word ontology as inputs and produces one of the six emotion classes (i.e. love, sadness, joy, fear and surprise, anger) as the output. Every input text contains some short stories which are firstly read and assigned an emotion class manually and then that emotion class is compared to the output of the proposed system to check the accuracy of the Proposed Emotion Detector System. It is found that the Proposed Emotion Detector System produces output with the accuracy of more than 75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.