The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt ''janus-like'' domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Enzyme-linked immunosorbent assays (ELISA), as one of the most used immunoassays, have been conducted ubiquitously in hospitals, research laboratories, etc. However, the conventional ELISA procedure is usually laborious, occupies bulky instruments, consumes lengthy operation time, and relies considerably on the skills of technicians, and such limitations call for innovations to develop a fully automated ELISA platform. In this paper, we have presented a system incorporating a roboticmicrofluidic interface (RoMI) and a modular hybrid microfluidic chip that embeds a highly sensitive nanofibrous membrane, referred to as the Robotic ELISA, to achieve human-free sampleto-answer ELISA tests in a fully programmable and automated manner. It carries out multiple bioanalytical procedures to replace the manual steps involved in classic ELISA operations, including the pneumatically driven high-precision pipetting, efficient mixing and enrichment enabled by back-and-forth flows, washing, and integrated machine vision for colorimetric readout. The Robotic ELISA platform has achieved a low limit of detection of 0.1 ng/mL in the detection of a low sample volume (15 μL) of chloramphenicol within 20 min without human intervention, which is significantly faster than that of the conventional ELISA procedure. Benefiting from its modular design and automated operations, the Robotic ELISA platform has great potential to be deployed for a broad range of detections in various resource-limited settings or high-risk environments, where human involvement needs to be minimized while the testing timeliness, consistency, and sensitivity are all desired.
Fish and algae oil supplements are enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are precursors to oxidized fatty acids, known as oxylipins. Here, we optimized a base hydrolysis method for measuring oxylipins in oil with ultrahigh-performance liquid chromatography coupled to tandem mass-spectrometry (UPLC-MS/MS) and quantified them in fish and algae oil supplements. Hydrolysis of 2 μL of oil with sodium carbonate resulted in greater oxylipin concentrations and minimal matrix effects, compared to higher oil volumes (10, 20, and 30 μL). Oxylipin yield was higher when oil was hydrolyzed in methanol containing 0.1% acetic acid and 0.1% butylated hydroxytoluene, compared to no methanol, and using sodium hydroxide versus sodium carbonate. Oxylipins extracted from 2 μL of oil using sodium hydroxide in solvent showed that EPA-derived oxylipins were most abundant in fish oil (84−87%), whereas DHA-oxylipins were abundant in algae oil (83%). This study shows that fish and algae oils are direct sources of EPA-and DHA-derived oxylipins.
In oil, free fatty acids (FFAs) are thought compared the efficiency of hydrolysis wto be the preferred substrate for lipid oxidation although triacylglycerols (TAGs) are the predominant lipid class. We determined the preferential oxidation substrate (TAGs versus FFAs) in soybean oil heated at 100 °C for 24 h, after validating a method for quantifying esterified and free lipid oxidation products (i.e., oxylipins) with mass-spectrometry. Reaction velocities and turnover (velocity per unit substrate) of FFA, and free and TAG-bound (esterified) oxylipins were determined. FFA hydrolysis rate and turnover were orders of magnitude greater (16-4217 fold) than that of esterified and free oxylipin formation. The velocity and turnover of TAG-bound oxylipins was significantly greater than free oxylipins by 282- and 3-fold, respectively. The results suggest that during heating, TAGs are preferentially oxidized over FFAs, despite the rapid hydrolysis and availability of individual FFAs as substrates for oxidation. TAG-bound oxylipins may serve as better markers of lipid oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.