The classical radio-magnetotelluric (RMT) method is nowadays routinely applied to various environmental, engineering, and exploration problems. The technique uses radio transmitters broadcasting in the frequency range of 10 kHz to 1 MHz, and the measurements are carried out in the far field. The well-known disadvantages of RMT are a lack of robust radio transmitters in remote areas; the absence of transmitters broadcasting below 10 kHz, which limits the penetration depth; and a possible low signal-to-noise ratio. To overcome these difficulties, controlled sources can be used (controlled-source RMTs [CSRMTs]). We extend the CSRMT method to perform measurements not only in the far field but also in the transition zone. In CSRMT practice, it often is challenging to maintain far-field conditions for logistical reasons. Therefore, part of the measured data contains signatures of the source field, which cannot be interpreted with magnetotelluric software. In addition, the source placed directly in the survey area allows us to increase the signal-to-noise ratio and resolution. Such CSRMT in the transition zone is, in fact, a controlled-source electromagnetic method but with full impedance tensor and tipper vector transfer functions. We develop new procedures for the 3D modeling and inversion of the tensor radio-frequency data measured in the transition zone of two perpendicular horizontal electric dipole sources. In this case, the geometry of the source must be considered in the forward modeling. The developed modeling and inversion software is tested on a synthetic 3D model. The 3D resistivity models derived from the real data confirm the geologic settings and are consistent with the available borehole information. Therefore, we conclude that the CSRMT approach extended to include the source field is feasible and that the developed procedures are reliable.
Radiomagnetotellurics (RMT) is an electromagnetic method that uses signals from radio transmitters broadcasting in the 10 kHz to 1 MHz frequency range. Due to its limited frequency range, RMT is commonly used as a shallow-depth investigation tool. However, in remote areas, there is a lack of radio transmitters and only signals from very low frequency (VLF) antennas (10-30 kHz frequency range) can be measured. This can give rise to low signal-to-noise ratio. To overcome this disadvantage of RMT, a controlled-source RMT (CSRMT) can be applied to measure signals of the low-frequency (LF) and mid-frequency ranges (30-1000 kHz). Moreover, the wider frequency range of the CSRMT method (down to 1 kHz) leads to a deeper sounding depth. We present the first RMT and CSRMT validation studies using two perpendicularly located horizontal electric dipoles to realize a 3D inversion of CSRMT data. The survey area in Alexandrova village in Kaluga region, Russia, a previously investigated area, was selected for a validation study. We acquired the data along 8 profiles with 175 stations. Transmitter lines for the CSRMT case were about 900 m long, and the minimum and maximum distances of the stations from transmitters were 450-1000 m, respectively. We applied 2D and 3D inversions over the far-field data and compared with the previous results. The available geophysical information as well as the borehole data indicate a high agreement between the obtained models and the geological structure. We can confirm that the CSRMT method is a reliable approach for near-surface explorations and that, the existing advanced and tested inversion tools for magnetotellurics, can be used to invert the RMT and far-field zone CSRMT data leading to comparable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.