One half million patients suffer from colorectal cancer in industrialized nations, yet this disease exhibits a low incidence in underdeveloped countries. This geographic imbalance suggests an environmental contribution to the resistance of endemic populations to intestinal neoplasia. A common epidemiological characteristic of these colon cancer-spared regions is the prevalence of enterotoxigenic bacteria associated with diarrheal disease. Here, a bacterial heat-stable enterotoxin was demonstrated to suppress colon cancer cell proliferation by a guanylyl cyclase C-mediated signaling cascade. The heat-stable enterotoxin suppressed proliferation by increasing intracellular cGMP, an effect mimicked by the cellpermeant analog 8-br-cGMP. The antiproliferative effects of the enterotoxin and 8-br-cGMP were reversed by L-cis-diltiazem, a cyclic nucleotide-gated channel inhibitor, as well as by removal of extracellular Ca 2؉ , or chelation of intracellular Ca 2؉ . In fact, both the enterotoxin and 8-br-cGMP induced an L-cis-diltiazem-sensitive conductance, promoting Ca 2؉ influx and inhibition of DNA synthesis in colon cancer cells. Induction of this previously unrecognized antiproliferative signaling pathway by bacterial enterotoxin could contribute to the resistance of endemic populations to intestinal neoplasia, and offers a paradigm for targeted prevention and therapy of primary and metastatic colorectal cancer.
PNP in children and adolescents is most often a presenting sign of occult Castleman's disease. It presents with severe oral mucositis and cutaneous lichenoid lesions. Serum autoantibodies against plakin proteins were the most constant diagnostic markers. Pulmonary injury appears to account for the very high mortality rates observed.
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.