Anatomical segmentation of structures of interest is critical to quantitative analysis in medical imaging. Several automated multi-atlas based segmentation propagation methods that utilise manual delineations from multiple templates appear promising. However, high levels of accuracy and reliability are needed for use in diagnosis or in clinical trials. We propose a new local ranking strategy for template selection based on the locally normalised cross correlation (LNCC) and an extension to the classical STAPLE algorithm by Warfield et al. (2004), which we refer to as STEPS for Similarity and Truth Estimation for Propagated Segmentations. It addresses the well-known problems of local vs. global image matching and the bias introduced in the performance estimation due to structure size. We assessed the method on hippocampal segmentation using a leave-one-out cross validation with optimised model parameters; STEPS achieved a mean Dice score of 0.925 when compared with manual segmentation. This was significantly better in terms of segmentation accuracy when compared to other state-of-the-art fusion techniques. Furthermore, due to the finer anatomical scale, STEPS also obtains more accurate segmentations even when using only a third of the templates, reducing the dependence on large template databases. Using a subset of Alzheimer's Disease Neuroimaging Initiative (ADNI) scans from different MRI imaging systems and protocols, STEPS yielded similarly accurate segmentations (Dice=0.903). A cross-sectional and longitudinal hippocampal volumetric study was performed on the ADNI database. Mean±SD hippocampal volume (mm(3)) was 5195 ± 656 for controls; 4786 ± 781 for MCI; and 4427 ± 903 for Alzheimer's disease patients and hippocampal atrophy rates (%/year) of 1.09 ± 3.0, 2.74 ± 3.5 and 4.04 ± 3.6 respectively. Statistically significant (p<10(-3)) differences were found between disease groups for both hippocampal volume and volume change rates. Finally, STEPS was also applied in a multi-label segmentation propagation scenario using a leave-one-out cross validation, in order to parcellate 83 separate structures of the brain. Comparisons of STEPS with state-of-the-art multi-label fusion algorithms showed statistically significant segmentation accuracy improvements (p<10(-4)) in several key structures.
Amyloid imaging studies of presymptomatic familial Alzheimer’s disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer’s disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical grey matter regions of interest, with increased fractional anisotropy in bilateral putamen. We propose that axonal injury may be an early event in presymptomatic Alzheimer’s disease, causing an initial fall in axial and mean diffusivity, which then increases with loss of axonal density. The selective degeneration of long-coursing white matter tracts, with relative preservation of short interneurons, may account for the increase in fractional anisotropy that is seen in the thalamus and caudate presymptomatically. It may be owing to their dense connectivity that imaging changes are seen first in the thalamus and striatum, which then progress to involve other regions in a vulnerable neuronal network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.