In this work, we design and analyze a numerical scheme for solving the generalized time‐fractional Telegraph‐type equation (GTFTTE) which is defined using the generalized time fractional derivative (GTFD) proposed recently by Agrawal. The GTFD involves the scale and the weight functions, and reduces to the traditional Caputo derivative for a particular choice of the weight and the scale functions. The scale and the weight functions play an important role in describing the behavior of real‐life physical systems and thus we study the solution behavior of the GTFTTE by varying the weight and the scale functions in the GTFD. We investigate the solution profile of the GTFTTE under some of these choices. We also provide the stability and the convergence analysis of the proposed numerical scheme for the GTFTTE. We consider two test examples to perform numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.