Several research works on disease detection in coffee plants have been presented in recent years. Leaf miner and rust are the most prevalent diseases in Arabica coffee plants. Early detection of such diseases allows farmer to take diagnostic actions before the infection spreads to neighboring plants. With advancements in drones and artificial intelligence (AI), the automatic detection of leaf diseases is gaining prominence in the field of smart agriculture. Furthermore, it is critical to develop an accurate method for infestation detection with minimal computational complexity. Existing works for plant disease detection utilize pre-trained deep learning models with millions of parameters.A feasible trade-off has to be attained between accuracy and computational complexity for the deployment of such deep networks. This research proposes an effective method for disease detection in Arabica coffee plants using EfficientNetB0 architecture. The architecture of the EfficientNetB0 network was improvised by including a ghost module at its end. This integration allows the network to learn effectively with minimal parameters without compensating for the end accuracy. The proposed model has a total of 4,874,531 parameters which is significantly lesser than most of the state-of-the-art deep learning architectures and achieved an accuracy of 84%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.