Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Seed size is one of the major determinants of seed weight and eventually, crop yield. As the global population is increasing beyond the capacity of current food production, enhancing seed size is a key target for crop breeders. Despite the identification of several genes and QTLs, current understanding about the molecular regulation of seed size/weight remains fragmentary. In the present study, we report novel role of a jasmonic acid (JA) signaling repressor,
OsJAZ11
controlling rice seed width and weight. Transgenic rice lines overexpressing
OsJAZ11
exhibited up to a 14% increase in seed width and ~30% increase in seed weight compared to wild type (WT). Constitutive expression of
OsJAZ11
dramatically influenced spikelet morphogenesis leading to extra glume‐like structures, open hull, and abnormal numbers of floral organs. Furthermore, overexpression lines accumulated higher JA levels in spikelets and developing seeds. Expression studies uncovered altered expression of JA biosynthesis/signaling and MADS box genes in overexpression lines compared to WT. Yeast two‐hybrid and pull‐down assays revealed that OsJAZ11 interacts with OsMADS29 and OsMADS68. Remarkably, expression of
OsGW7
, a key negative regulator of grain size, was significantly reduced in overexpression lines. We propose that
OsJAZ11
participates in the regulation of seed size and spikelet development by coordinating the expression of JA‐related,
OsGW7
and MADS genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.