The aim of indoor localization is to locate the objects inside a location wirelessly. This paper reports the models that predict the location along with floor and coordinates from the WAPs (Web Access Points) signal strengths of a user who connects to the internet at a specific location which had three locations. Starting with the cleaning of data, then assigning attributes into proper data types, making subset of dataset for each location, examining each column, and normalizing WAPs rows in order to build models. Different algorithms have been used to predict the location, floor, and coordinates of a logged in user. The models that have been used in this paper are k-Nearest Neighbor (k-NN) for location prediction, random forest for floor prediction and regression with k-NN for coordinate prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.