Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Articles
Background Patients with cancer are purported to have poor COVID-19 outcomes. However, cancer is a heterogeneous group of diseases, encompassing a spectrum of tumour subtypes. The aim of this study was to investigate COVID-19 risk according to tumour subtype and patient demographics in patients with cancer in the UK. Methods We compared adult patients with cancer enrolled in the UK Coronavirus Cancer Monitoring Project (UKCCMP) cohort between March 18 and May 8, 2020, with a parallel non-COVID-19 UK cancer control population from the UK Office for National Statistics (2017 data). The primary outcome of the study was the effect of primary tumour subtype, age, and sex and on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence and the case–fatality rate during hospital admission. We analysed the effect of tumour subtype and patient demographics (age and sex) on prevalence and mortality from COVID-19 using univariable and multivariable models. Findings 319 (30·6%) of 1044 patients in the UKCCMP cohort died, 295 (92·5%) of whom had a cause of death recorded as due to COVID-19. The all-cause case–fatality rate in patients with cancer after SARS-CoV-2 infection was significantly associated with increasing age, rising from 0·10 in patients aged 40–49 years to 0·48 in those aged 80 years and older. Patients with haematological malignancies (leukaemia, lymphoma, and myeloma) had a more severe COVID-19 trajectory compared with patients with solid organ tumours (odds ratio [OR] 1·57, 95% CI 1·15–2·15; p<0·0043). Compared with the rest of the UKCCMP cohort, patients with leukaemia showed a significantly increased case–fatality rate (2·25, 1·13–4·57; p=0·023). After correction for age and sex, patients with haematological malignancies who had recent chemotherapy had an increased risk of death during COVID-19-associated hospital admission (OR 2·09, 95% CI 1·09–4·08; p=0·028). Interpretation Patients with cancer with different tumour types have differing susceptibility to SARS-CoV-2 infection and COVID-19 phenotypes. We generated individualised risk tables for patients with cancer, considering age, sex, and tumour subtype. Our results could be useful to assist physicians in informed risk–benefit discussions to explain COVID-19 risk and enable an evidenced-based approach to national social isolation policies. Funding University of Birmingham and University of Oxford.
Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci. Using this assay, we compared 7 cfDNA extraction kits and found cfDNA yield and fragment size vary significantly. We also compared 3 blood collection protocols using plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA Blood Collection Tubes processed within 24 and 72 hours) and found no significant differences in cfDNA yield, fragment size and background noise between these protocols. In 219 clinical samples, cfDNA fragments were shorter in plasma samples processed immediately after venipuncture compared to archived samples, suggesting contribution of background DNA by lysed peripheral blood cells. In summary, we have described a multiplexed ddPCR assay to assess quality of cfDNA samples prior to downstream molecular analyses and we have evaluated potential sources of pre-analytical variation in cfDNA studies.
BackgroundKRAS is the most frequently mutated gene in pancreatic ductal adenocarcinoma (PDAC), but the mechanisms underlying the transcriptional response to oncogenic KRAS are still not fully understood. We aimed to uncover transcription factors that regulate the transcriptional response of oncogenic KRAS in pancreatic cancer and to understand their clinical relevance.Methods and FindingsWe applied a well-established network biology approach (master regulator analysis) to combine a transcriptional signature for oncogenic KRAS derived from a murine isogenic cell line with a coexpression network derived by integrating 560 human pancreatic cancer cases across seven studies. The datasets included the ICGC cohort (n = 242), the TCGA cohort (n = 178), and five smaller studies (n = 17, 25, 26, 36, and 36). 55 transcription factors were coexpressed with a significant number of genes in the transcriptional signature (gene set enrichment analysis [GSEA] p < 0.01). Community detection in the coexpression network identified 27 of the 55 transcription factors contributing to three major biological processes: Notch pathway, down-regulated Hedgehog/Wnt pathway, and cell cycle. The activities of these processes define three distinct subtypes of PDAC, which demonstrate differences in survival and mutational load as well as stromal and immune cell composition. The Hedgehog subgroup showed worst survival (hazard ratio 1.73, 95% CI 1.1 to 2.72, coxPH test p = 0.018) and the Notch subgroup the best (hazard ratio 0.62, 95% CI 0.42 to 0.93, coxPH test p = 0.019). The cell cycle subtype showed highest mutational burden (ANOVA p < 0.01) and the smallest amount of stromal admixture (ANOVA p < 2.2e–16). This study is limited by the information provided in published datasets, not all of which provide mutational profiles, survival data, or the specifics of treatment history.ConclusionsOur results characterize the regulatory mechanisms underlying the transcriptional response to oncogenic KRAS and provide a framework to develop strategies for specific subtypes of this disease using current therapeutics and by identifying targets for new groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.