Abstract-Knee Osteoarthritis is most ordinary kind of joint inflammation, which often occurs in one or both the knee joints. Osteoarthritis is additionally called as 'wear and tear' process of joint that results in dynamic disintegration of articular cartilage. Cartilage is smooth substantial layer that ensures movement to occur effortlessly. In Osteoarthritis, the cartilage is inclined towards the destruction as it loses elasticity and becomes brittle.Osteoarthritis is regularly investigated from radiographic evaluation after clinical examination. In any case, a visual evaluation made by the restorative physician depends on experience that varies subjectively and is profoundly reliant on their experience. Subsequently, in order to make diagnostic process more systematic and reliable, evolution of imaging based analysis for early recognition of Osteoarthritis is required. The objective of this study is to develop a machine vision approach for investigation of Knee Osteoarthritis using region based and active shape model. The computation involves histogram of oriented gradient (HOG) method. The processed HOG elements are computed using multiclass SVM for evaluating Osteoarthritis based on Kellgren and Lawrence (KL) grading system. The classification rate of 97.96% for Grade-0, 92.85% for Grade-1, 86.20% for Grade-2, 100% for Grade-3 & Grade-4 is obtained. The results are promising and competitive which are validated by the medical experts.
Arthritis is one of the chronic joint disorders that have affected many lives including middle age and older age group. Arthritis exists in many forms and one among them is Osteoarthritis. Osteoarthritis affects the bigger joints like knee, hip, spine, feet etc. Early detection of Osteoarthritis is most essential if not treated properly may result in deformity. The researchers have become more concerned to detect the disorder in the early stage by merging their medical knowledge with machine vision approach in an appropriate way. The objective of this work is to study various segmentation techniques for the detection of Osteoarthritis in the early stage. The different segmentation technique like Sobel and Prewitt edge segmentation, Otsu's method of segmentation and Texture based segmentation are used to carry out the experimentation. The different statistical features are computed, analyzed and classified. The accuracy rate of 91.16% for Sobel method, 96.80% for Otsu's method, 94.92% for texture method and 97.55% for Prewitt method is obtained. The results are more promising and competitive which are validated by medical experts.
Significant information extraction from the images that are geometrically distorted or transformed is mainstream procedure in image processing. It becomes difficult to retrieve the relevant region when the images get distorted by some geometric deformation. Hu's moments are helpful in extracting information from such distorted images due to their unique invariance property. This work focuses on early detection and gradation of Knee Osteoarthritis utilizing Hu's invariant moments to understand the geometric transformation of the cartilage region in Knee X-ray images. The seven invariant moments are computed for the rotated version of the test image. The results demonstrated are found to be more competitive and promising, which are validated by ortho surgeons and rheumatologists.
A certain number of researchers have utilized uni-modal bio-metric traits for gender classification. It has many limitations which can be mitigated with inclusion of multiple sources of biometric information to identify or classify user's information. Intuitively multimodal systems are more reliable and viable solution as multiple independent characteristics of modalities are fused together. The objective of this work is inferring the gender by combining different biometric traits like face, iris, and fingerprints of same subject. In the proposed work, feature level fusion is considered to obtain robustness in gender determination; and an accuracy of 99.8% was achieved on homologous multimodal biometric database SDUMLA-HMT (Group of Machine Learning and Applications, Shandong University). The results demonstrate that the feature level fusion of Multimodal Biometric system greatly improves the performance of gender classification and our approach outperforms the state-of-the-art techniques noticed in the literature.
Arthritis is a joint disorder featuring inflammation. There are numerous forms of Arthritis. Arthritis essentially causes joint dis-functioning which may further tend to cause deformity and disability. Osteoarthritis (OA) is one form of arthritis which is mostly seen in old age group. A patient suffering from OA needs to visit medical experts where clinical and radiographic examination is carried out. Analysis of bone structures in initial stage is bit complex. So any vague conclusion drawn from the radiographic images may make the treatment faulty and troublesome. Thus to overcome this we have developed an algorithm that computes the cartilage area/thickness using various shape descriptors. The computed descriptors obtained the accuracy of 99.81% for K-nearest neighbour classifier and 95.09% for decision tree classifier. The estimated cartilage thickness is validated by radiographic experts as per KL grading framework which will be helpful to the doctors for quick and appropriate analysis of ailment in the early stage. The results are competitive and promising as reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.