The ability to externally control gene expression has been paradigm shifting for all areas of biological research, especially for synthetic biology. Such control typically occurs at the transcriptional and translational level, while technologies enabling control at the DNA copy level are limited by either (i) relying on a handful of plasmids with fixed and arbitrary copy numbers; or (ii) require multiple plasmids for replication control; or (iii) are restricted to specialized strains. To overcome these limitations, we present TULIP (TUnable Ligand Inducible Plasmid): a self-contained plasmid with inducible copy number control, designed for portability across various Escherichia coli strains commonly used for cloning, protein expression, and metabolic engineering. Using TULIP, we demonstrate through multiple application examples that flexible plasmid copy number control accelerates the design and optimization of gene circuits, enables efficient probing of metabolic burden, and facilitates the prototyping and recycling of modules in different genetic contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.